
Missingness No Yes
No Complete information Finite sample causal 

inference (Fisher)
Yes Standard statistical 

inference “to the 
population”

Sample & assignment 
selection (Neyman, 
Rubin)

Counterfactuals?

Un
its

?

What is missing, what is desired?

Causal and statistical inference
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Y1

YT

B

blocking can (e.g. regression, matching,…)
• reduce bias 
• reduce noise
• explain heterogeneity.

{X : E      (Y0, Y1) | X}

YOBS = Y0+(Y1 – Y0)E

{X : E      (Y0, Y1) | e(X)}
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blocking can (e.g. regression, matching,…)
• reduce bias 
• reduce noise
• explain heterogeneity.
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blocking can (e.g. regression, matching,…)
• reduce bias 
• reduce noise
• explain heterogeneity



Bias (sampling & assignment)
Y0

Y1

Y0

Y1

Fisher but Simpson, Neyman but Berkson
Actually, this should be a 2 x 2 table of graphs (with/without each bias).



Correlation and causation in social 
genomics

Justin Chumbley



Gene expression



Gene expression

Dogma of statistical inference: y ~ P



Counterfactual gene expression.

Gene expression

Exposure 

Dogma of statistical inference: (y,t) ~ P



Counterfactual gene expression.

P(Y)

P(T)

P(Y, T)

Gene expression

Exposure 

Dogma of statistical inference: (y,t) ~ P



Counterfactual gene expression.

P(Y)

P(T)

P(Y, T)

Gene expression

Exposure 

= P(Y)P(T)

Dogma of statistical inference: (y,t) ~ P



Counterfactual gene expression.

Gene expression

Exposure 



Counterfactual gene expression.

M

Gene expression

Exposure 



Counterfactual gene expression.

Gene expression

Disease

M

Exposure 







Chen
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Cause (Noun): something that brings about an 
effect or a result
Effect (Noun): something that inevitably 
follows a … a cause

- gene expression
- N dimensional gene expression
- cell type prevalence
- clustering coefficient
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Probability is symmetric.
What is missing?

YT

Missing structure.
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Probability is symmetric.
What is missing?

YT

Missing structure.
y = f(t, uy)t = g(ut)
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YT

Missing structure.

Probability is symmetric.
What is missing?

y = f(t, uy)t = g(ut)

Z

• Variables/nodes
• Included Arrows
• Excluded arrows (strong exclusion restrictions)



Y0

Y1

Probability is symmetric.
What is missing?



Y0

Y1

Probability is symmetric.
What is missing?
Missing counterfactual 
CTRA, had you not been 
exposed to adversity.



Y0

Y1

YOBS = Y0+(Y1 – Y0)T
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Unit potential effect

Y1 - Y0
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0
Y1 - Y0

Finite sample effect

log(Y1 /Y0)

Unit potential effect



Y0

Y1

0
Y1 - Y0

log(Y1 /Y0)

YT

Unit potential effect

Finite sample effect
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0
Y1 - Y0

log(Y1 /Y0)

YT

Unit potential effect

Finite sample effect

(super) population effect

Different estimands
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YT YT

E(Y1-Y0) ≠ E(Yt-Yc)
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Systematic assignment 
selection bias: potential 
outcomes imbalanced 
across treatment groups.
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Natural propensity
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Continuous covariate.
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S = 1(T + Y > c) = 1c

0 0
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0
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Backdoor theorem



Identification

• Randomization
• Conditioning
• Instrumental variables
• Inverse-probability
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Counterfactual gene expression.Actual observed gene expression.



Counterfactual gene expression
under Fishers sharp imputation. 



Stochastic proof by contradiction.
Gene-level (DE, MCP)

Set-level (MCP if multiple sets)
Network-level









Variants

• Fisher’s finite-sample 
• Neyman/Rubin super-population
– interval estimation requires additional 

assumptions beyond what is required for testing 
the causal null hypothesis

• etc, …



Identification

• Randomization
• Conditioning
• Instrumental variables
• Inverse-probability

{X : T (Y0, Y1) | X}

{X : T      (Y0, Y1) | e(X)}
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B



M
C

Table 2: Our analysis of the relation between Chen, the CTRA gene set and its component subsets, with and without covariate 
adjustment (see Q1). This table presents p-values from a global score test on a hyperparameter in an empirical Bayesian 
model, and is an alternative to classical tests of a point null hypothesis against a high dimensional alternative, even when the
number of genes exceeds the number of samples. This test has optimal expected power in the neighbourhood of the null 
hypothesis. We used a permutation null distribution which requires the assumption that there is no relationship between gene 
expressions on the one hand, the covariates (bmi, sex and race) and the censoring mechanism on the other hand: permuting 
destroys these associations. The main advantage of the permutation-based P-value is that it gives an ‘exact’ P-value, which is 
guaranteed to keep the alpha level provided enough permutations are used. This is especially useful for smaller sample sizes 
like ours, where we may not trust the normality of the distribution of our score statistic. Note that a significant global test does 
not mean that every interferon gene is associated with Chen. It means that the subjects with similar Chen have relatively 
similar CTRA interferon expression profile. It also means that there is potential to predict Chen from interferon gene 
expression.

YT

B = (sex, race, bmi



Reality check



Y

T

10

YT
M

Proximal/distal 
Environmental
Brain
Cognitive
Molecular – KEGG DAG/TELIS



Y0,M1

Y0,M0

Natural variation in 
response of M to 
treatment, across 
units.

YT
M



YT
M

Exclusion restrictions.
RCT assumptions not enough.
Heterogeneity.



YT
M

C311

Exclusion restrictions.
RCT assumptions not enough.



YT
M

C311

Assume,
Y   = C311

M = T + C311

Adjusted treatment effect.
Compare T = 0/1 for matched units M = 0.

Y = C311 = M - T = 0
Y = C311 = M - T = -1

Exclusion restrictions.
Sequential ignorability.
RCT assumptions not enough.
Sequential ignorability.



YT
M

C111

C311

C212



YT
M

C311

marginals



YT
M

C311



Reality check

• Mediation in feedback systems
• Beyond conditioning
– Omitted confounds
– No treatment variation within-strata 
– Artifactual selection (marginal structural models, etc).

• Methods from life-course epidemiology, statistics, 
engineering….
– Marginal structural causal models
– Causal structure learning.



Thank you



Information box: 
Defining and representing causation

• Modern definitions of total, and path-specific effects - direct and indirect - are general, and not tied to any specific statistical 
model.

• A causal variable is defined as any variable which changes the potential outcome of another variable. This idea can be 
interpreted as follows. First suppose we know the equations which dictate the natural directions of causation between 
variables in some system. Next override the equation governing one focal variable, and instead switch this variable between 
two different values. By definition, this focal variable is a cause of any variable which responds to this intervention (through
the remaining equations). The difference between these definitions is purely notational; potential outcome definitions can 
easily be converted to structural definitions. Potential outcomes can be viewed as a short hand notation for general 
structural equations (not necessarily linear or parametric). For example, take the following trivial, linear parametric 
structural equation model: we can abbreviate the structural causal equations !"#$%('% = 1) = + + - + .%, and 
!"#$%('% = 0) = + + .% as !"#$%(1) and !"#$%(0) respectively. Note that only one potential outcome can be observed, 
the other is counterfactual. Causal inference, i.e. on !"#$%(1) − !"#$%(0), thus requires identifying conditions which 
justify imputing the missing counterfactual. See (Pearl 2014) to explicitly compare the structural formulation of mediation 
side by side with the potential outcome formulation.

• Causation is defined ceteris parabis, i.e. at the level of each individual "unit" subjected to intervention. Various statistical 
methods aim to infer population parameters of these unit-level causal effects, such as propensity score matching and 
nearest-neighbor matching (which often uses the Mahalanobis metric, also called Mahalanobis matching), attempt to 
correct for the assignment mechanism by finding control units similar to treatment units on variables which confound causal 
effects (implied by ceteris parabis).



Information box: what is 
identification?

• A parameter is said to be identified if different parameter settings of the underlying data generating process imply different 
distributions over observed variables. This identifiability - or lack thereof - is not a statistical problem related to the 
challenges of statistical inference with small samples. Pearl (2009) provides one way to think about identification. 
Dependence between observed variables reflects some unknown mix of causal and noncausal ("backdoor") effects. A causal 
effect is identified when the observed association can been adjusted somehow to remove these noncausal components. For 
nonparametric identification, the analyst would describe the set of assumptions that will allow us to identify a causal effect 
without any distributional or functional form assumptions.

• To take a famous example, randomized treatment and the SUTVA identification (Rubin 1974) together nonparametrically 
identify the average total effect. To identify the indirect and direct effects, additional assumptions are necessary, e.g. 
"sequential ignorability".

• Causal identification assumes the investigator has domain knowledge to judge the plausibility of no confounding type of 
assumptions which underly all mediation methods, whether under the rubric of sequential ignorability (e.g., Imai et al., 
2010b), uncorrelated error terms, or graphical criterea. The assumptions identifying mediation can be stated most succinctly 
in the latter.

• Identification conditions can be expressed in diverse ways, e.g. judging conditional independencies among counterfactual 
variables, often called strong ignorability, conditional ignorability , or sequential ignorability, presents a formidable task 
without structural models. Efforts to replace ignorability vocabulary - with notions such as no unmeasured confounders, no 
unmeasured confounding, as if randomized, effectively randomly assigned, or essentially random - create ambiguity. First, 
the notion of a confounder varies significantly from author to author. Some define a confounder (say of the NP-CTRA 
relationship) as a variable that affects both NP and CTRA. Some define confounder as a variable that is associated with both 
NP and CTRA. Others allow for a confounder to affect NP and be associated with CTRA. Worse yet, the expression no 
unmeasured confounders is sometimes used to exclude the very existence of such confounders and sometimes to affirm our 
ability to neutralize them by controlling other variables, not necessarily confounders. Second, the interpretations have taken 
sequential ignorability as a starting point and consequently are overly stringent – sequential ignorability is a sufficient but 
not necessary condition for identifying natural effects. Weaker conditions can be articulated in a transparent and 
unambiguous language which provide a greater identification power and a greater conceptual clarity.



Information box: Alternatives to 
sequential ignorability conditions for

identification
• Instrumental variables offer a very different answer from a causal mediation analysis (Keele 2015). Mechanisms based on IV 

have the advantage that one can allow for the possibility of unobserved confounding between the mediator and the 
outcome. However, to identify the indirect effect, one must assume that the direct effect is zero. The assumption that the 
direct effect is zero is widely referred to as the exclusion restriction (Angrist, Imbens, & Rubin, 1996). Thus, one must assume 
that there is only an indirect effect, which implies that the effect of the treatment is entirely mediated. Under this form of 
mechanism, we must assume that the effect of a NP only works through Chen: There cannot be any other mechanisms for 
the intervention.

• Statistically "controlling" for M in the analysis (by including M in the regression equation) does not physically disable the
paths going through M ; it merely matches samples with equal M values, and thus induces spurious correlations among 
other factors in the analysis, see (Pearl 2014). This can be readily shown using classical path-tracing rules. Such dependence 
cannot be detected by statistical means, so theoretical knowledge must be invoked to identify the sources of these 
correlations and control for common causes (so called "confounders") of M and CTRA whenever they are observable. This 
approach to mediation has two major drawbacks. One (mentioned above) is its reliance on the untested assumption of 
uncorrelated errors, and the second is its reliance on linearity and, in particular, on a property of linear systems called effect 
constancy (or no interaction): The effect of one variable on another is independent of the level at which we hold a third. This 
property does not extend to nonlinear systems; in such systems, the level at which we control M would in general modify 
the effect of T on CTRA. For example, if the output CTRA requires both T and M to be present, then holding M at zero would 
disable the effect of T on CTRA , while holding M at a high value would enable the latter.



Information Box: Modern mediation
• Although one could define mediation statistically, we follow the causal definition.
• The conventional mediation analysis entails fitting a set of linear regression models: ``mediation effects'' are defined in 

terms of these estimated model parameters. One problem with defining mediation in terms of statistical changes induced by 
adding a third mediator variable into a regression equation, is that mediation is inherently a causal notion hence should not
be defined in statistical terms. Modern approaches therefore define mediation in terms of potential outcomes, or 
equivalently causal graphs. In the language of the latter, a mediator is then an intermediate variable that lies on the causal 
path from the treatment to the outcome. This definition is grounded in the notion of a causal path and emphasizes the 
difference between "fixing a variable" and "statistically adjusting for" (conditioning on) a variable as in regression.

• To illustrate our measure of ACME more formally, consider a binary measure of negative parenting, a variable we call ! which 
takes 0 or 1. We will now define indirect effect of NP - via mediator Chen " - within the modern framework. "#(!) is the 
effect of NP on Chen for subject & under treatment (NP) status !. Let '()*#(!,,) denote the potential outcome if NP and 
Chen took values !,, respectively. We only observe one of these potential outcomes '()*#(!#, "#(!#)), where "#(!#) is the 
observed value of Chen at the observed NP level !#. '()*#(!,"#(!)) is the effect of ! on CTRA, which in general and be 
transmitted both indirectly, through "#(!), and "directly" (i.e. not through M but possibly through some independent 
mediators). Let the total causal effect for unit (subject) & be

• -# = '()*#(1,"#(1)) − '()*#(0,"#(0))
• and the unit-level indirect effect be
• 2# = '()*#(!,"#(1)) − '()*#(!,"#(0)).
• This latter relates to the following counterfactual question: how would CTRA change in this indidividual if we were to 

physically (counterfactually) change Chen's value under ! = 0 (no negative parenting) to that under ! = 1 (negative 
parenting), while keeping NP at its observed value !? Because these two values of Chen would naturally occur as responses 
to changes in NP, this quantity formalizes the notion of a causal mechanism that the causal effect of the treatment is 
transmitted through changes in the mediator of interest. Similarly, we define the unit direct effect, corresponding to all 
other possible causal mechanisms (sometimes refered to en masse as the "direct effect"), as:

• 3# = '()*#(1,"#(!)) − '()*#(0,"#(!)).
• The counterfactual question here is: how would CTRA respond to NP change (# = 0 to (# = 1, if (counterfactually) Chen was 

held constant? Mediation analysis creates an identification problem. The quantity '()*&(1,"#(0)), for example, is 
unobservable, but to estimate the mediation effect we need assumptions which link this unobserved counterfactual to 
observed quantities. We examine these assumptions. Such definitions can easily be extended to continuous treatments (NP 
not binary) (Imai, Keele, and Yamamoto 2010).
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