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ier work on false discovery rate (FDR) and evaluate it in relation to topological
inference in statistical parametric mapping. We note that controlling the false discovery rate of voxels is not
equivalent to controlling the false discovery rate of activations. This is a problem that is unique to inference
on images, in which the underlying signal is continuous (i.e., signal which does not have a compact support).
In brief, inference based on conventional voxel-wise FDR procedures is not appropriate for inferences on the
topological features of a statistical parametric map (SPM), such as peaks or regions of activation. We describe
the nature of the problem, illustrate it with some examples and suggest a simple solution based on
controlling the false discovery rate of connected excursion sets within an SPM, characterised by their volume.
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Introduction

In this note, we consider the detection of distributed signals in
image data, using statistical parametricmapping (SPM). The notion of a
distributed signal is critical, in that it forces us to consider signal (as
well as noise) as spatially continuous without compact support.
Examples of distributed signals include induced responses in EEG
studies that are distributed over frequency and peristimulus time or
hemodynamic responses in fMRI that are mediated by molecules that
diffuse rapidly over space. When signal is distributed, one might
intuitively define the signal at a spatial location (e.g., voxel) as the value
of the signal process at that location. However, voxel-wise approach
this leads to several problems. A priori, all points have signal (see Table
1), so it is illogical to examine a null hypothesis of no signal. This
compels us to define treatment effect or activation as signal above
some ad hoc threshold. Second, the multiple-comparison problem
becomes severe (with thousands of voxels contributing to family-wise
error). These considerations lead to the notion of an activation that is
defined in terms of the signal's topological features (e.g., maxima,
spatial extent etc). This converts a continuous signal into a discrete set
of features, whose statistics can be examined in the usual way. The
notion of a topological response finesses the interpretation of
inference and allows for rigorous control of a smaller multiple
comparison problem (Friston et al., 1991; Worsley et al., 1992). Under
the topological perspective, a response or activation is an attribute of
euroimaging, 12 Queen Square,

mbley).
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the signal profile over voxels; it is therefore a category error1 to call a
voxel activated. For example, we refer to a peak in a SPM as “an
activation”not a collection of activations at voxels subtending the peak.
The implications of this categoryerror can bequite profound, because it
permits images to be treated collections of discrete voxels or statistical
tests that do not consider the continuity constraints under which the
datawere generated. In this work, we look at FDR procedures from the
topological perspective. In particular, we show that, in the context of
smooth distributed signals, conventional FDR procedures do not
control the FDR of either voxels or topological features. The purpose
of this note is to promote discussion of current public-software
implementations of voxel-wise FDR and their usefulness.

False discovery rate procedures were introduced to neuroimaging
by Genovese et al. (2002). Since their introduction, they have enjoyed
considerable use. Controlling false discovery rate (FDR) provides a
more sensitive analysis than the conventional control of family-wise
error. This is particularly important for neuroimaging, which faces a
severe and rather complicated multiple comparison problem. How-
ever, the problem faced by conventional FDR procedures is that they
regard SPMs as a collection of discrete tests. This is in contrast to
random field theory approaches, which consider an SPM to be a lattice
approximation to an underlying continuous process. This distinction is
not trivial. Inference, using random field theory, is about topological
features of the SPM, such as the number of maxima or regions, their
spatial extent or their peak height. On the other hand, inference using
false discovery rate treats each voxel as a separate feature. This can lead
to the following problem, which is best illustrated with an example:

● Imagine that we declare a hundred voxels significant using an FDR
criterion. 95 of these voxels constitute a single region that is truly
1 Assigning an attribute to something that cannot possess that attribute.
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active. The remaining five voxels are false discoveries and are
dispersed randomly over the search space. In this example, the
false discovery rate of voxels conforms to its expectation of 5%.
However, the false discovery rate in terms of regional activations is
over 80%. This is because we have discovered six activations but
only one is a true activation. This is a contrived example but
illustrates nicely the problem we want to address.

In brief, when we make an inference using SPM it is about a
topological feature e.g. inflection points, or clusters above a threshold.
It is not about each voxel in that cluster (or more formally the
excursion set). This is why one only reports the cluster, usually in
terms of its maximum value and location. Conventional family-wise
procedures (e.g., Bonferroni correction) cannot support this sort of
inference because they have no notion of topology. In other words, the
fact that two voxels are part of the same cluster is incidental to both
inference and the way the results are reported. This limits the
usefulness of procedures like the Bonferroni correction and FDR in
imaging and was the motivation for random field theory approaches
to topological inference based on differential topology (Friston et al.,
1991;Worsley et al., 1992). In short, the Bonferroni correction controls
the false positive rate of voxels, whereas SPM controls the false
positive rate of features. Conventional FDR procedures control the
false discovery rate of voxels, whereas they should be controlling the
false discovery rate of features.

This problem with FDR is articulated nicely by Heller et al.
(2006); “Recognizing that the fundamental units of interest are the
spatially contiguous clusters of voxels that are activated together, we
set out to approximate these cluster units from the data by a
clustering algorithm especially tailored for fMRI data” (see also
Pacifico et al., 2004; Benjamini and Heller, 2007). We pursue the
same theme but using a simple approach and standard results from
random field theory.

This paper comprises two sections. The first presents the
theoretical background to conventional inference in neuroimaging,
false discovery rate and a quantitative illustration of the problem
introduced above. We then consider alternative formulations of FDR
based on the topology of excursion sets. The second section provides
Table 1
Why signal is a smooth analytic function of its support

Physical reasons (point-spread functions)
• In fMRI, signal is acquired in k-space or Fourier space; this means signal and noise are
measured in terms of Fourier coefficients and, after projection onto anatomical space,
have continuous support.
• Similarly, for PET and other modalities that reconstruct images using filtered back-
projection from scintillation counts.
• Space-time EEG and MEG data are continuous functions of space and time, if they are
formed from interpolation using continuous basis functions over space. In the time
domain, signal is continuous in the sense that electromagnetic activity is never zero.
Data-feature and processing reasons
• All time-frequency data from EEG and MEG are smooth because they are formed from
(windowed) Fourier transforms of the times-series, from sensor or source space (e.g.,
Kilner et al., 2005
• Smoothing of fMRI constant images for between-subject (second-level) analyses with
Gaussian filters render signal continuous. This is required to account for inter-subject
variability in functional anatomy
• Smoothing of grey-matter segments required by voxel-based morphometry makes
data a continuous measure of grey matter probability density (e.g., Ashburner and
Friston, 2000)
• Source reconstructed data from EEG and MEG uses spatial smoothness priors to
provide a unique solution to the ill-posed inverse problem (e.g., Baillet and Garnero,
1997; Mattout et al., 2006).
Biological reasons
• Population neuronal activity propagates through intrinsic and lateral connections and
is modelled in neural-field models as a function of space and time using wave equations
(e.g., Nunez, 1974; Jirsa and Haken, 1997; Breakspear et al., 2006)
• Hemodynamic signals are initiated by rapidly diffusing signals, which have infinite
support in finite time (e.g. nitric oxide; Friston, 1995)
• Neuronal activity is inherently distributed by extrinsic connections in the brain.
someworked examples and evaluates the procedures using simulated
and real data.

Theory

This section examines a commonplace procedure: voxel-wise FDR
on smooth data. Our purpose is to show that the implicit assumptions
about signal and noise may be untenable. Regarding the former, voxel-
wise FDR on data with continuous signal is strictly illogical2; i.e., if the
signal does not have compact support, the FDR must be zero. We
nevertheless use a tolerant measure of FDR and show that voxel-wise
thresholds fail to control the FDR of voxels or regions. Second, these
procedures assume that correlations among the noise are independent
of their spatial relation, which is not true. These observations mean
that voxel-wise FDR cannot support or reject the claim that “that some
parts of the brain are activated under treatment”. With a view to a
remedy, we note that FDR control using random field theory relaxes
the assumption that signal has compact support. Inference is
conditioned on the null everywhere; if there is no signal anywhere
before smoothing, there is no signal anywhere after. It also relaxes the
assumption that noise correlations are independent of location. We
therefore exploit random field theory to implement reasonable FDR
control on topological features of interest.

Topological inference

Conventionally, neuroimaging uses classical inference to protect
against false positives in the context ofmultiple dependent comparisons
(see Nichols and Hayasaka (2003) for a review of common approaches).
This usually uses some form of statistical parametric mapping, which
entails the adjustment of p-values using random field theory. This
spatially adjustment plays the same role as a Bonferroni correction for
discrete data and controls family wise error (FWE); i.e., the rate of
making one or more false positive declarations over the search volume.
Critically, random field theory regards the data as realizations of a
continuous process in spatial or other dimensions. This is in sharp
contrast to procedures like the Bonferroni correction, which consider
images to be collections of discrete voxels,with no continuity properties.
The random field theory adjustment is more appropriate for continuous
data, whose continuity properties place special constraints on spatial
dependencies. For smooth data, these constraints are harnessed by
random field theory to provide a much more accurate and sensitive
adjustment than the equivalent Bonferroni correction.

P-value adjustments for continuous data were introduced using
the theory of level-crossings in stochastic processes to control the
false positive rate of statistical maxima or peaks (Friston et al., 1991).
The distributional approximations were easy to formulate because a
peak is defined by a negative second derivative and a zero-crossing of
the first derivative (i.e. a peak is flat at its top). Controlling the number
of peaks, or regional activations, by thresholding is not the same as
controlling the false positive rate of voxels. This is because each region
can contain many voxels. Put simply, the expected number of supra-
threshold voxels is the expected number of regions (i.e., peaks) times
the expected number of voxels per region (Friston et al., 1994). Clearly,
this means the expected number of voxels is greater than the expected
number of peaks. Another way to look at this is in terms of topological
inference; one is not making an inference about a voxel, but a
topological feature of a process or function of position in the image.
These features are generally attributed to a region or cluster (more
formally, a connected excursion set above threshold; Worsley et al.,
1992). At high thresholds, the number of clusters is equal to the
2 FDR is defined as FDR=E(V/R), the expected fraction of all positive decisions R, that
are false positive decisions V. To be applicable, this definition requires that a subset of the
image is signal-free. In images with continuous signal (e.g. after smoothing), all voxels
have signal and consequently there are no false positives; FDR (and FWE) must be zero.
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number of maxima. The key thing here is that we are not making
inferences about voxels but about features of an underlying topology.3

This means controlling the false positive rate of voxels is irrelevant.
The critical thing to control is the false positive rate of the features we
are making inferences about.

Random field theory

Shortly after the introduction of statistical parametric mapping,
Worsley et al. (1992) showed, in a seminal paper, that random field
theory (RFT) could be used to provide adjusted p-values based on the
expected Euler characteristic. The Euler characteristic is, effectively, the
number of clustersminus the number of holes. At high thresholds, this is
roughly equal to the number of maxima or regions. In this context, the
distributional approximations formaxima (Friston et al.,1991) and those
using the Euler characteristic converge (Worsley et al., 1992). The
advantage of the latterwas that theycould be generalized to anynumber
of dimensions. Over the next few years, this approach to topological
inference was extended and refined to provide distributional approx-
imations for the maxima and spatial extent of activated regions, for a
whole series of statistical maps, in an arbitrary number of dimensions.
An annotated bibliography can be found at http://www.fil.ion.ucl.ac.uk/
spm/bibliography.html. (see Worsley et al., 2004).

In the present context, it is important to reiterate that inference
under random field theory pertains to clusters or maxima. This is
because the FWE of clusters (i.e. the Euler characteristic) is controlled,
not the FWE of voxels (which is expected Euler characteristic times the
expected number of voxels per cluster). These clusters are reported in
terms of their maxima (in tables) or constituent voxels (in a graphical
SPM). However, one is not saying each voxel is significant (if one were
interested in a pre-specified voxel there would be no multiple
comparison problem). One is simply saying the probability of getting
a cluster with the observed attributes (peak height or volume) by
chance is sufficiently small to warrant reporting.

In summary, RFT represents the statistical behaviour of SPMs by
modelling noise as Gaussian random fields. At no point do we require
an assumption about the alternative hypothesis; the underlying signal
process. For example, we can simply ask “is there a surprising number
of suprathreshold voxels in this cluster, assuming there is no signal
anywhere in the image?”Nevertheless, a raft of physical and biological
considerations suggests that signal is indeed continuous over space
(see Table 1). This means we can make the following interpretation;
any topological data-feature, deemed improbable under the null,
provides evidence for the existence of such a feature in the signal.
Happily, we can then call on (discrete) multiple-test formalisms from
mainstream statistics to control the FWE or FDR over the discrete set of
topological features.

False discovery rate procedures

FDR was introduced by Genovese et al. (2002) as an alternative
family-wise error procedure. FDRprocedures aremore sensitive because
theydonot control the false positive rate but the false discovery rate. The
false discovery rate is simply the proportion of tests declared significant
that have been falsely declared significant. These procedures were
developed fairly recently for families of discrete tests (Benjamini and
Hochberg, 1995). Their principal use is as a screening procedure that
helps identify candidates for further analysis. For example, in drug
screening, it is important not to miss potentially interesting drugs that
can be evaluated further. Although FDR is extremely elegant and simple,
we want to focus on a fundamental shortcoming, in the context of
continuous imaging signals. Like the Bonferroni correction, FDR
3 The measures of signal we use (‘spatial extent’, ‘number of activated regions’) are
not unique characterisations and depend on an arbitrary cluster-forming threshold.
This is an inherent aspect of these measures.
procedures were designed for families of discrete tests. They do not
cover data with continuous signal or discrete data, which have been
smoothed post hoc. Because they cannot represent topological features,
they cannot furnish inferences about regional effects like random field
theory. This means that although the expected number of falsely
discovered voxels can be controlled, there is no way of controlling the
expected number of falsely discovered regions. This can be demon-
strated quite easily:

A toy simulation

To demonstrate, quantitatively, the difference between controlling the
false discovery rate of voxels and clusters, we performed a set of two-
dimensional simulations. We simulated eight images, each with
V=128×128 voxels, whose values were sampled from the normal
distribution. A true signal of 24×24 voxel and height 0.75 was placed in
the centre of this two-dimensional image (see rationale below). The
resulting innovations were smoothed with a Gaussian kernel (full width
halfmaximumof six voxels).Note that, aswith real data, signal is therefore
propagated from its (24×24 voxel) source to all areas of the image (with
attenuation according to the distance from signal source and the form of
the convolution kernel). This is formally equivalent to using unsmoothed
datawith a continuous underlying signal. A one-sample t-testwas applied
to each voxel to form a simple SPM with seven degrees of freedom. The
uncorrected p-values, associated with the ensuing t-values were ordered
and a threshold controlling FDR was computed. This procedure is
described in Genovese et al (2002) and entails finding the largest p-
value that is belowa lineof slopeqas shown in Fig.1a.q is theupper bound
on the FDR.Weusedq=0.05,whichmeanswe aim to control the expected
false discovery rate at 5%.

To avoid a nonsensical implementation of FDR, in the case where
signal is continuous, we have two options: Define a heuristic threshold
indicator that labels “weak” signal as “no signal”, or define true
discoveries as voxels that belong to some compact signal before
smoothing. Both are ad hoc but to explicate FDR we chose the latter:
Once the t-fields had been thresholded, true-positive discoveries were
defined as voxels, which lay within the original 576=24×24 signal
domain (recall that due to smoothing, this is necessarily an
underestimate4).

Fig. 1b displays one realization of t-values over the search space.
Beneath this, Fig. 1c depicts the same data as a contour map, where
filled white areas indicate discovered voxels. In this example, there are
4 clusters, comprising 1017 voxels. The largest region encompasses the
true signal (before smoothing). This cluster contained 931 voxels. For
this example, the false discovery rate, in terms of voxels, was 40%. In
terms of regions, there are 4 clusters but only one is a true discovery.
Therefore the false discovery rate in terms of clusters is 75%.

We repeated this procedure 500 times for twenty different spatial
widths of the signal. Estimated false discovery rates for voxels and
clusters are shown in Fig. 2. The key thing to observe is that as the
width of the activation increases, relative to the smoothness of the
noise, the false discovery rate for clusters increases markedly from
around 46% to 89%. In other words, the majority of regions declared
significant under this criterion would be false. Furthermore, the false
discovery rate of voxels is substantially bigger than expected; rising
from about 20% to 50% as the signal volume gets smaller relative to
smoothness (or relative smoothness increases). This is much bigger
than the expected value of 5%; so what has gone wrong with FDR?

The reason, as alluded to above, is that our definition of “signal”
ignores any signal propagated elsewhere in the image by the
convolution or smoothing. This unsatisfactory state of affairs arises
because there is no principled way to assign voxels as being truly
4 In smoothed images or images with continuous signal, all voxels have signal and
consequently there are no false positives; FDR (and FWE) must be zero.
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Fig. 1. Panel a displays the ordered uncorrected p-values of every voxel in the 128×128 t-image shown in panel b: with (right) and without (left) log scaling. The point of intersection
between this empirical curve and the function iq/V constitutes the (adaptive) FDR threshold. Supra-threshold voxels are displayed in panel c.

65J.R. Chumbley, K.J. Friston / NeuroImage 44 (2009) 62–70
active or not in the context of continuous processes (e.g. these data
after smoothing). This means that unless signal has compact support
(i.e., a compact subset of the volume contains signal), the FDR of voxels
is ill-defined. In this case, the notion of an “activated voxel” has no
meaning (i.e., it represents a category error).

Volume of activation vs. activated volume

This is a fundamental problem for any inference device that
borrows from conventional statistics. When the signal or response to
treatment is continuous, it is a category error to assign the attribute
“activated” to a voxel because a voxel encodes one point in space. In
this context, FDR on voxels is not defined. In the example above,
convolution renders every voxel part of an activation, in the sense
signal is never exactly zero anywhere. As mentioned above, FDR on
voxels treats each voxel as categorically active or not (and does not
consider things like smoothness). The topological perspective does
not have to contend with this category error because the spatial
extents of clusters or the number of maxima are well-defined (to
within a defining threshold or level).

It is important to realise that all the key papers on FDR (e.g.,
Genovese et al., 2002; Pacifico, et al., 2004; Heller et al., 2006;
Benjamini and Heller, 2007) only examine signals with compact
support. At no point in the devolvement of FDR procedures for
neuroimaging has anyone considered the case of smooth analytic
signals and the failure of FDR under these conditions. For example,
Pacifico et al. (2004) develop false discovery control for random fields,
by formulating effects in terms of (Lebesgue) measures or volumes;
this “extends false discovery rates to random fields, for which there
are uncountably many hypothesis tests”. These procedures control the
FDR of the volume of search space or the clusters comprising the
excursion set. FDR on volume corresponds to a FDR of voxels and, as
such, is prey to the same category error introduced above. Indeed, the
examples used to illustrate the approach use geometric shapes as
“signal” so that each voxel can be labelled as signal or not signal. These
are reminiscent of the models used in “image-restoration” (Rosenfeld
and Kak, 1976) and machine-vision problems (Davies, 2005); however
they are not appropriate models of distributed signals (e.g., neuronal
activations). The cluster-based FDR procedure described in Pacifico et
al. (2004) defines a cluster as true if the proportion of its volume that
is truly activated exceeds some threshold τ. This is an ad hoc definition
and again rests on the assumption that some measure (i.e., volume)
can be labelled as activated. Although the excursion set of an activa-
tion can have volume, volume itself cannot have the attribute



Fig. 2. Depicts the estimated FDR of voxels (solid curve) versus clusters (studded curve)
as attained by the conventional voxel-wise FDR procedure. These graphs were obtained
by averaging over repeated noisy, realisations, as described in the text.
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activated; in the sense that a mountain can cover a large area but a
location in that area cannot be a mountain. The result is a procedure
that controls “the proportion of clusters in which false rejections
occur”. The problem is that a true cluster is defined in terms of the
proportion of its volume that is activated but a volume cannot be
activated. In the next section, we take a much simpler and tenable
approach to the controlling the FDR of clusters, using the volume of
activation.

Activations as functions

It could be argued that activation in brain images can be defined on
voxels because the data are just pictures of objects with compact
support (e.g., ocular dominance columns in visual cortex). In fact, the
signals in PET and fMRI data do not have compact support but are
continuous and analytic (differentiable) functions of location. This is
because the images are formed by back-projection and inverse Fourier
transform of the sampled data respectively (i.e., the signal and noise
are mixtures of basis functions with infinite support; Twieg, 1983).
Even in the absence of these mathematical considerations, hemody-
namic signals are mediated by rapidly diffusing substances that
preclude a compact support (Friston, 1995). Indeed, most adaptive
smoothing algorithms that try to reserve functional topology, use
diffusion-based kernels (e.g., Huang and Cheng, 2005; Harrison et al.,
2007).

In other applications of topological inference, the distributed nature of
the signal is more self-evident. For example, in the detection of induced
responses using time-frequency decompositions of electromagnetic data
(Kilner et al., 2005), responses are defined explicitly in topological terms
(e.g., peaks of gamma band activity late in peristimulus time; Kaiser et al.,
2002). In short, inference in neuroimaging calls on distributed models of
signal that do not have compact support. This means a particular voxel or
volume element cannot be labelled as signal or not signal. In this context,
the FDR of voxels or volumes has no meaning and inference on discrete
topological features is required. If signal can be defined on voxels (e.g., in
image-processing and computer vision problems), then one can use
conventional statistics and SPM is unnecessary.
Summary

In summary, although false discovery rate procedures represent a
good idea, when each test or voxel has meaning in its own right, their
unqualifieduse indetecting regional activationsmaynot be appropriate.
This is because a regional activation can be a topological feature of a
continuous or extended process that is not covered by current FDR
procedures. In the context of large activations, the majority of regional
effects reported using current FDR procedures could easily be false
discoveries. It may be important to appreciate this when using the FDR
in neuroimaging when signals do not have compact support. We next
consider adaptationsof the FDRprocedures to accommodate topological
inference.

Controlling topological false discovery rate

FDR based on spatial volume

One simple solution to the problem highlighted above is to control
the false discovery rate of topological features as opposed to voxels. In
other words, apply the FDR procedure to the null distribution of
features such as cluster-volume or peak height. In this work, we focus
on FDR for cluster-volume. As stated in Genovese et al. (2002) any
valid statistical test with a known null distribution can be subject to
FDR control. In this section, we use this procedure with simulated and
real data to compare and contrast it with conventional voxel-based
FDR.

The null distribution of the number of voxels in each cluster
(conditional on that cluster existing) above some ad hoc threshold is
already known for Gaussian processes (Friston et al., 1994). In fact, this
p-value is provided routinely in the SPM tables, under uncorrected p-
values based on spatial-extent (the product of this p-value and the
Euler characteristic is the corrected p-value at the cluster level). These
uncorrected p-values enable FDR control on the proportion of
false positive clusters that exceed size s, by thresholding the p-values
as described in Genovese et al. (2002). In this context, the topology is
characterized with a list of clusters (as opposed to a list of tests or
voxels). FDR, in this instance, can be regarded as a step-wise procedure,
where a Bonferroni correction is applied to the p-value of the largest
cluster. Note that a Bonferroni correction to all the uncorrected p-
values based on cluster-volume is a “cheap and cheerful” way of
controlling FWEwithin randomfield theory. The step-wise component
converts it into a FDR control procedure. For detailed discussion of
which stepwise procedures control the false discovery rate in multiple
hypotheses testing, see Sarkar (2002). These conventional procedures
are now viable because the SPM has been reduced to a list of cluster-
volumes that has no inherent topology.

As noted by one of our reviewers; in the multiple testing
framework used to develop FDR on voxels, the number of tests (i.e.,
voxels) is fixed; and in a continuous setting uncountably many
(Pacifico et al., 2004). However, for FDR on clusters, the number of
tests is a finite random variable, even for a fixed threshold. If we
condition on the number of tests (clusters) observed, we can argue
that the conditional FDR given the observed number of clusters is
less than 5% and hence, after averaging over all possible numbers of
clusters, the FDR is also less than 5%. This rests on the assumption
that the volume of a cluster is independent of the number of
clusters in any search volume (i.e., ignoring boundary effects; Friston
et al., 1994).

Cluster-wise FDR has been addressed previously in the context of
fMRI (Heller et al., 2006; Benjamini and Heller, 2007). For example,
Benjamini and Heller (2007) control the FDR on contiguous clusters (as
defined by independent data) before proceeding to voxel-wise FDR. As
in Pacifico et al. (2004), we use random field theory as a model of the
data but in a much more straightforward way. To motivate these
approaches, we present numerical results that contrast the voxel-wise
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and cluster-wise FDR approaches and show how the former fails in
relation to the latter.

Quantitative evaluations on simulated data

Werepeated the simulations of theprevious section usingboth voxel
and cluster-wise FDR. The upper-left panel of Fig. 3a shows discovered
Fig. 3. The left panels compare the results obtained from the voxel-wise FDR thresholding (up
thresholds are displayed to their right. Panel a differs from panel b in having a true underlying
ordered log(p-values) and the thin line corresponding to logic (iq/V).
voxels, as attained by the FDR procedure on voxels. As emphasized
above, this results in excessive false regional discoveries (here 8
discovered regions, as opposed to just one underlying true region).
The lower panels of Fig. 3a depict the same data. Here however, FDR
thresholding has beenperformed at the cluster level. Discovered clusters
are shown in lower-left frame of Fig. 3a. These were obtained by
performing FDR thresholding on the p-values associated with the
per) versus spatial-extent FDR thresholding (lower). The log (p-values) underlying these
signal withmore restricted support. The FDR threshold obtains at the intersection of the



Fig. 5. An axial slice of the whole brain t-map from an auditory stimulation study (see
main text).
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volume of each region (lower-right panel); in particular, the volume of
each connected subset of voxels surpassing an (arbitrary) height
threshold of three. This spatial extent was assigned a p-value indicating
how improbable it was, assuming that no signal is present (null images
are modelled as Gaussian random fields). Approximate functional
forms used to compute these p-values will be found in Friston et al.
(1994) and Worsley (2003). Note that this procedure results in notably
fewer falsely discovered regions than under the conventional FDR
procedure over voxels. Fig. 3b uses the same format as Fig. 3a but
presents results using a smaller spatial support for the pre-convolved
signal. Results (not reported) were qualitatively similar for all other
signal configurations.

We repeated the above procedures 500 times for twenty different
sizes of the pre-convolved signal. Fig. 4 contrasts the estimated
expectation of FDR for clusters under the conventional voxel-wise
approach (shown in Fig. 2) and the cluster-wise approach based on
random field theory. It is evident that while the former approach leads
to very large false discovery rates, the latter is much more robust and
remains close to the true upper bound of q=0.05 over all signal
configurations.

Illustrative application to real data

Finally, we applied the procedures outlined above to real data.
This data set comprises whole brain BOLD/EPI images acquired on a
2 T SiemensMAGNETOMVision system. Each acquisition consisted of
64 contiguous slices (64×64×64, 3×3×3 mm voxels). 96 images
were acquired (TR=7 s) from a single subject, in blocks of six, giving
sixteen 42 s blocks. Successive blocks alternated between rest and
auditory stimulation, starting with rest. Auditory stimulation
comprised bi-syllabic words, presented binaurally at a rate of 60
per minute. We discarded the first twelve scans to eschew T1
saturation effects. These images are stored in Analyse format and are
available from the SPM site http://www.fil.ion.ucl.ac.uk/spm/data/.

Having realigned and smoothed these data with a Gaussian kernel
of 6 mm FWHM, we constructed a single t-image for the contrast:
active vs. rest. Fig. 5 shows an axial slice, taken from this t-image. For
Fig. 4. Depicts the estimated regional FDR as obtained using conventional voxel-wise
FDR procedure (studded curve) versus that under spatial-extent FDR (dashed curve).
These graphs were obtained by averaging over repeated noisy realisations.
the purposes of comparison, we performed both voxel-wise and
cluster-wise FDR thresholding on the same axial slice of the t-image.
Fig. 6 uses the same format as Fig. 3. The upper left panel depicts
voxels that have been classified as positive (“discovered”) according to
voxel-wise FDR (upper right panel). This panel is to be contrasted with
the lower left panel which reports clusters discovered under the
cluster-wise FDR procedure.

Supra-threshold activations are shown in black, sub-threshold
voxels in grey (white areas denote voxels with no brain tissue). Note
that numerous small activations present in the voxel-wise FDR have
been excluded in the cluster-wise FDR. These include (right) fronto-
lateral and medial posterior activations as well as small satellites of
the two principally bilateral activations. In sum, voxel-wise FDR
discovers eleven regions while cluster-wise FDR discovers six. The five
regions in dispute are all between one and three voxels in extent.

To calculate p-values for spatial volume from analytic approxima-
tions, one requires the smoothness of the data (i.e., the equivalent
Fig. 6. The leftmost column contrast regions discovered by the conventional voxel-wise.
FDR procedure (upper left) versus the spatial-extent FDR procedure (lower left).
Discovered voxels are in black, sub threshold brain tissue is in grey and non-brain tissue
is in white. The corresponding ordered log (p-values) required for these respective FDR
procedures are displayed alongside each of the images.

http://www.fil.ion.ucl.ac.uk/spm/data/
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FWHM). We estimated this smoothness via the algorithm presented in
Kiebel et al. (1999) that is implemented as a standard part of SPM. It is
important to note that the validity of these p-values relies on two things.
The height threshold chosen should not be data-dependent; i.e., the
threshold should be determined prior to looking at the data. Second, we
emphasize that the validity of all fMRI inference procedures based on
RFT relies on an assumption: that the true smoothness is close to its
(unbiased) point estimate. This assumption is tenable because we used
an estimator pooled across the entire image (see Kiebel et al., 1999),
under the assumption that the spatial correlations are roughly
stationary.

Discussion

In this work we have revisited the use of FDR for topological
inference on neuroimages.We have shown that there are fundamental
problems with the interpretation of voxel-wise FDR. Firstly, because it
contains no inherent representation of the spatial structure of signal,
voxel-wise FDR cannot control the false discovery rate of regional
effects. One consequence is that the regional FDR arising from a voxel-
wise FDR analysis may be intolerably large (see Fig. 2). Second, in
practice, the use of voxel-wise FDR relies on a definition of activation
that precludes distributed responses; in other words, signal exists in
some discrete, proper subset of voxels, each of which can be activated
or not. However, under this assumption, because images are smooth
(generally analytic) functions of space and have continuous signal, the
existence of activation in one voxel can induce activation in every
voxel. Historically, people have adopted a pragmatic simplification in
which continuous data like images are regarded as a “bag” of voxels,
each of which can be switched on or off. This heuristic permits the use
of voxel-wise FDR. However, it fails completely in the context of image
smoothness (see Table 1) that is enforced by many applications (e.g.,
analysis of PET images, voxel-based morphometry, time-frequency
analysis of EEG and second-level or between-subject fMRI analyses). In
this regard, it is notable that, in the presence of smoothing, the voxel-
wise FDR violates the putative upper bound (q=0.05) by a very large
margin (Fig. 2).

We have outlined an approach that combines the False Discovery
Rate (FDR) procedure with Random Field Theory (RFT). Following
Heller et al. (2006), we have identified the elements of an FDR analysis
not with voxels but with some topological property of the underlying
signal. We have focused on the volume of topological excursion sets.
Furthermore, our results (Fig. 4) indicate that, unlike voxel-wise FDR,
estimates of the cluster-wise FDR are consistently close to their
theoretical upper bound (q=0.05).

To estimate the rate of true and false discoveries in our
simulations, we humoured the assumption of compact signal but,
in line with standard practice, smoothed the data (signal and noise).
We defined region-wise FDR as the proportion of “discovered
contiguous regions” that contained “true signal” (the compact
support of the signal before smoothing). Similarly, we defined
voxel-wise FDR as the proportion of “discovered voxels” that
contained “true signal” (this overlooks the fact that smoothing
strictly invalidates FDR). Our simulations show that conventional FDR
thresholding procedures do not control either of these FDR estimates.
Furthermore, the FDR for a nominal voxel-based threshold changes
with signal width (Fig. 2). Because signal width is unknown and non-
stationary the ensuing FDR is unknown and uncontrolled. The only
procedure that performed reasonably was a cluster-based FDR
threshold, which controlled the false discovery rate of clusters, over
all signal widths (Fig. 4).

We have emphasised that extant FDRprocedures are predicated on a
model of signal that is an attribute of every point in the image (i.e., every
location can be labelled as either “activated” or not). This is fine for
images of discrete objects with compact spatial support because it
allows one to infer that an object exists at a particular location. However,
this is not an appropriate model for distributed signals like neuronal
activity that are present everywhere in the search space. This is not a
semantic nicety; it can lead to seriously misleading inferences about
regional effects in neuroimaging, as we have demonstrated. The
distributed nature of neuronal signals is not an approximation; it is a
fundamental property of the brain, certainly at the level of population
dynamics that are modelled with neural field equations (which are
explicit wave-functions of space and time; e.g., Nunez, 1974; Jirsa and
Haken, 1997; Breakspear et al 2006) or are inferred using distributed
source reconstruction techniques fromelectromagnetic data (e.g., Baillet
and Garnero, 1997; Mattout et al., 2006).

If signal is smooth and does not have bounded support, signal exists
everywhere in an image. This means that all voxels contain signal and it
is unhelpful to think of a voxel as activated or not. In this context,
activations are an attribute of the profile over voxels andwe require FDR
control on clusters or maxima. However, there are situations (e.g., in
image restoration), where signal has bounded support (e.g., an object is
ether present at a particular location in a photograph or it is not). One
perspective, on the distinction between signal as a continuous function
of position and signal confined to a proper subset of locations, is
provided by the smoothness of the signal, in relation to noise (Keith
Worsley; personal communication).

When the signal's smoothness reduces to zero, the image
restoration model becomes plausible; in the sense that signal falls
off very quickly and is effectively bound to each voxel. In this context,
voxel-based FDR thresholds are valid and can be more sensitive than
cluster-based thresholds: simulations using a point signal, whose
width is much less than the point spread-function inducing noise
correlations, show that voxel-based FDR thresholds aremore sensitive
and specific than equivalent cluster-based thresholds, provided one
assesses the FDR of clusters (KeithWorsley; personal communication).
This recapitulates the well-known behaviour of FWE procedures,
where the sensitivity of cluster-based inference is surpassed by peak-
based tests when the smoothness of the signal falls below the
smoothness of noise. Furthermore, it concurs with the results in Figs. 2
(and 4), which show the FDR of clusters increases with signal width,
under a voxel-based threshold (note these results consider only
signals that have the same, or greater, width as noise).

These observations suggest that the FDR of both voxels and
clusters, defined by conventional voxel-based thresholds, depends on
signal width. This is interesting but it presents a problem, because we
do not know the width of signal and, even if we did, it would not be
stationary, even in an image restoration setting. Furthermore, in an
imaging context, the signal is always more dispersed than noise,
because the effective point-spread function of the imaging device is
applied to both signal and noise. Under this lower bound on signal
dispersion (i.e., when signal and noise have the same width), both
voxel and cluster FDR, using conventional voxel-based FDR thresh-
olds, are unacceptably high. Taken together, these considerations
suggest that voxel-based FDR thresholding may have a limited role in
imaging.

It should benoted that theutility of FDRprocedures, in general, relies
on there being a large number of tests, where most of them are null.
Moving from the voxel-level to the cluster-level effectively reduces the
number of tests considered, especially for smooth data. One might
anticipate that cluster-level FDR thresholds may reverse the trend to
capricious reporting associated with conventional FDR control.

We emphasize that FDR based on cluster-volume is a specific
example of a potentially broad class of FDR procedures that perform
inference on discrete topological features. Most obviously, inference
might be performed on the maxima of an image. We note that one
cannot turn to routine random field theory to do this because the Euler
characteristic is a [scalar] topologicalmeasure of the entire excursion set
(i.e. all clusters). However, it is possible to return to the original
formulation presented in Friston et al. (1991; see also Worsley, 2005)
and compute the null distribution ofmaxima. The order statistics for the
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p-values can then be based on the null distribution of cluster-size or
maxima-values.
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