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In this technical note, we describe and validate a topological false discovery rate (FDR) procedure for
statistical parametric mapping. This procedure is designed to deal with signal that is continuous and has, in
principle, unbounded spatial support. We therefore infer on topological features of the signal, such as the
existence of local maxima or peaks above some threshold. Using results from random field theory, we assign
a p-value to each maximum in an SPM and identify an adaptive threshold that controls false discovery rate,
using the Benjamini and Hochberg (BH) procedure (1995). This provides a natural complement to
conventional family wise error (FWE) control on local maxima. We use simulations to contrast these
procedures; both in terms of their relative number of discoveries and their spatial accuracy (via the
distribution of the Euclidian distance between true and discovered activations). We also assessed two other
procedures: cluster-wise and voxel-wise FDR procedures. Our results suggest that (a) FDR control of maxima
or peaks is more sensitive than FWE control of peaks with minimal cost in terms of false-positives, (b) voxel-
wise FDR is substantially less accurate than topological FWE or FDR control. Finally, we present an illustrative
application using an fMRI study of visual attention.

© 2009 Elsevier Inc. Open access under CC BY license. 
Introduction

Numerous authors have remarked that the fundamental effects of
interest in fMRI are distributed and spatially continuous (e.g. Heller et
al 2006, see also Pacifico et al 2004 and Benjamini and Heller 2007). A
recent communication (Chumbley and Friston, 2009) proposed a
solution based upon conditional p-values associated with the spatial
extent of excursion sets above an arbitrary threshold (conditional on
such a set existing). Here, we revisit the same issue and present an
equivalent solution based on p-values associated with maxima or
peaks in a Statistical Parametric Map (SPM). This allows us to assign
FDR adjusted p-values (which we shall refer to as q-values) to both
peaks and clusters within any SPM on image data.

Most instances of image analysis deal with signals that are
continuous functions of some support; for example, anatomical
space, time and frequency in EEG analyses or various combinations
of space, time and frequency: In Chumbley and Friston (2009) we
discuss why signal is continuous in the majority of neuroimaging
applications and have reviewed the various image reconstruction
procedures and biophysical mechanisms that generate continuous
signals. If signal is a continuous function of the search space, strictly
speaking, every discovery is a true discovery, because signal is
everywhere. These conditions present a challenge to the conventional
application of FDR to separate tests or voxels.
license. 
In Chumbley and Friston (2009) we described a solution based
upon the topological features of the SPM. This involved controlling the
false-discovery rate, not of voxels, but of connected components of the
excursion set above some threshold (i.e., controlling the false-
discovery rate of clusters). In this note, we pursue the same theme
but control the false-discovery rate of maxima or peaks. Maxima or
peaks are the most common topological features of activation profiles
reported in the literature. Peaks are a useful characterisation of
regionally specific responses because they have a well-defined
location (usually reported in a standard anatomical space) and lend
themselves to data-basing. Note that a simple1 suprathreshold region
in an SPM could contain several peaks. Only at high thresholds, will
the number of suprathreshold regions and peaks be equal. Usually,
people display the SPM, at some threshold, as a maximum intensity
projection or rendered image and then discuss peaks that survive a
statistical criterion.

In what follows, we will consider signal to be a continuous
function of a statistical search space and an effect or activation to be
some topological feature of this function. In particular, we will
consider an activation to be a peak of the signal and a discovery to be
the corresponding peak in the statistical process or SPM. We thus
convert a continuous process (signal) to a topological feature
(activation) that does or does not exist. Finally, we may choose to
define “true positive” and “false positive” topological decisions (with a
1 Connected excursion sets with no holes, handles, etc.
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latitude that is not possible in the definition of decisions in discrete
tests). For example, one might reasonably label a discovered peak in
an SPM “true positive” if it lies within one FWHM of a true peak in the
underlying signal, and “false positive” otherwise. However, this
categorisation of discoveries as true or false depends on an arbitrary
threshold (here one FWHM). More generally then, we consider the
full distribution on the distance between observed and true maxima
under a procedure. This measure of the spatial accuracy is of interest
per se and can be readily transformed back into a qualitative false-
positive rate (by evaluating its cumulative density at any specified
distance). To assess accuracy, one can compare these distributions of
spatial error, over procedures.

This note comprises three sections. In the first, we present the
theory behind the control for false-discovery rates of peaks. We then
assess its performance in relation to conventional peak FWE in terms
of two complementary measures: (a) the relative number of
discoveries and (b) the spatial displacement of each discovered peak
from the true underlying peak (defined as the minimum distance
between true activations and discoveries). We report conditions
under which the peak-BH procedure identifies more activations (as
measured by a) at a negligible cost of identifying more false ones (as
measured by b). This enables us to compare different procedures in
quantitative terms, while side-stepping the different definitions of a
discovery (e.g. of “activation”) under voxel-wise and topological
approaches. In the final section, we apply the alternative procedures
(FWE and FDR on peaks and FDR on clusters and voxels) to a standard
fMRI dataset (the fMRI study of visual attention available at http://
www.fil.ion.ucl.ac.uk/spm).

Theory

In this section, we present the theory behind topological inference
based on FDR for peaks. The usual approach to topological inference is
as follows. First, derive the null distribution of the SPM, assuming no
signal and Gaussian error fields. Then define a random set Ah,s of
simple regions within the SPM, where each region exceeds h in height
and s in spatial extent (hiNh,siNs)with i=1, …, Mh,s. Finally, derive
the distribution ofMh,s, under the assumptions described in Friston et
al., 1996. This allows one to calibrate the thresholds (h,s) to control
the expected number of false positives E(Mh,s), or until the probability
of getting any false positives p(Mh,sN0) is sufficiently small; this is the
family-wise error (FWE) rate. Having established the decision
criterion (h,s) any observed region satisfying (hiNh,siNs) indicates
the qualitative existence of one or more maxima in the underlying
signal field (e.g., “an activation”).

An alternative approach, used in this work, views the random
excursion set Ah,s as comprising two random subsets Ah,s ={Ah,s,f, Ah,s,t}
of false- and true-positive domains. The integer count of simple regions
in Ah,s is nowMh,s=Mh,s,f+Mh,s,t. We use a simple algorithm (Benjamini
and Hochberg, 1995) to calibrate (h,s) so thatMh,s,f/Mh,sbα on average.
This approach does not seek to restrict the absolute number of false-
positive regions (as above), but their fraction amongall regionsdeclared
positive; this is the false discovery rate (FDR). This work (together with
Chumbley and Friston, 2009) considers special cases, where either h or s
are fixed in advance.

Briefly, we harvest the peaks above some user-specified threshold
u and compute the p-values for each of these peaks. We then evaluate
the corresponding q-values and threshold that controls the expected
false-discovery rate (using Benjamini and Hochberg 1995). Note that
we are controlling the false-discovery rate of peaks, not voxels. This
critical distinction applies equally to the control of false-positive rates
in conventional topological inference; namely, when we adjust the p-
values for multiple comparisons using random field theory, we are
controlling the false-positive rate of peaks or maxima within the SPM
(not voxels): The expected number of false-positive voxels depends
on the false-positive rate of peaks times the expected number of
voxels subtending one peak. As the expected number of voxels per
peak is always greater than one, the expected false-positive rate of
voxels is always greater than the false-positive rate of peaks.

To compute the threshold for control of FDR, and associated q-
values, we need the uncorrected p-value for each local peak in the
SPM. We can compute the uncorrected p-value for peaks above some
threshold using standard results from random field theory. This
computation is based upon the fact that the p-value for a peak Z
surpassing a threshold u, obtains by simply normalizing according to
Bayes rule:

pu zð Þ = p Z N z jZ N uð Þ = p Z N zð Þ
p Z N uð Þ ð1Þ

Provided the regional excursions remain simple, the right hand
side reports conditional p-values for u as follows.

pu zð Þ≈ ECD zð Þ
ECD uð Þ

ECD uð Þ N ECD zð Þz0Z1zpu zð Þz0
ð2Þ

Here ECD is the Euler characteristic density, the expected rate of
emission of peaks per resel (a measure of effective volume after
accounting for non-isotropic smoothness in a D-dimensional space).
While there is an exact expression for the Euler characteristic at all u
(Taylor and Worsley 2007), regions only remain simple for roughly
uN2.5.

In short, the uncorrected p-value is simply the ratio of the rates of
getting peaks above u and z, which is available from standard results
in random field theory (Worsley et al 1992, Friston et al 1994). For
example, in the cases of t fields, with v degrees of freedom, the right
hand side has the following form (see Worsley et al 1996),

pu zð Þ =
1 + z2

m

� �−1=2 m−1ð Þ m − 1
m z2 − 1

� �

1 + u2
m

� �−1=2 m−1ð Þ
m − 1

m u2 − 1
� � ð3Þ

These uncorrected p-values for maxima can then be submitted to
an FDR-control algorithm (Benjamini and Hochberg 1995), which
returns a threshold that controls the expected false-discovery rate.
Note that a conventional FDR procedure would rank the uncorrected
p-values associated with all voxels, treating them as a collection of
discrete tests.

Generally, independence of the p-values and the number of tests is
not needed in the BH procedure because the number of tests is fixed
and the “distribution functions” are essentially deterministic. Howev-
er, in our case, the number of p-values is itself a random variable
because it corresponds to the number of maxima in an observed SPM.
We therefore have to appeal to the Poisson clumping heuristic
(Aldous, 1989) to motivate the assumption that the uncorrected p-
values of the peaks are independent of their number. Intuitively, this
means that the occurrence of a peak in one part of the SPM does not
depend on the height of a peak in another part. Clearly, this rests on the
smoothness of the SPMbeing smaller than its domain and, implicitly, a
large number of peaks. Only under these circumstances is it sensible to
control FDR. This means that the FDR procedures discussed above are
only meaningfully applied when peaks are defined by a relatively low
threshold on SPMswith a large number of resels (i.e., a high Lipschitz–
Killing curvature; Taylor and Worsley 2007).

Assessing FDR

We must take care when evaluating the performance of an FDR-
control algorithm in the context of an alternative hypothesis that
involves continuous signal with unbounded support. This is because
under this condition, FDR on voxels is zero (because, strictly
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speaking, there is signal everywhere). We therefore use a perfor-
mance measure based on topological features; namely, the smallest
distance between the true activation (the peak of the signal) and the
discoveries (peaks in the SPM). Notice that the “minimum distance”
between a true activation and any peak in the SPM is well defined,
even if the peak is not (e.g., a ridge of peaks) . However, this minimum
distance measure is a pragmatic choice, which may confound
attempts to put the numerical results presented below on a firm
mathematical footing.

This minimum distance measure allows us to quantify the spatial
specificity of the FDR-control procedure, without making strong
assumptions about the nature of signal or its spatial support. In other
words, by defining a true activation as a peak in the signal and a
discovery as a supra-threshold peak in the SPM, we have a well-
defined measure of the spatial relationship between the two that
avoids defining a discovery in terms of voxels.

With this in mind, we define a vector-valued statistic D of the
field under the alternative hypothesis (i.e., spatially smooth
deterministic signal plus random field noise) such that the i-th
element:Di = min j Xi − μ j j : i = 1; N ; I, where I is the (random)
number of discoveries. j Xi − μ j j is the Euclidian distance between
the location of an observed local peak Xi and a true local peak in the
underlying signal; the μi each belong to the set of true peak locationsQ.

We can then consider thedistributionofminimumdistances,pproc(di)
corresponding to the randomvariablesDi associatedwith the discoveries
from each procedure (proc). This distribution over the spatial displace-
ments quantifies the spatial inaccuracy of a procedure. UsingΦproc(di) to
denote the cumulative density function of pproc(di), 1-Φproc(di) reports
the rate of displacements more extreme than di.

In the next section, we compare topological FDR based upon peaks
(peak-FDR) and clusters (cluster-FDR) and conventional voxel-wise
FDR, based upon uncorrected voxel-wise p-values (voxel-FDR) against
the benchmark of peak-FWE. We therefore contrast each procedure's
displacement error with that of topological peak-FWE using:

ΦFWE dið Þ− Φproc dið Þ ð4Þ

This reports accuracy of a procedure (proc) relative to peak-FWE
i.e. the rate of displacements more extreme than di attained using
proc relative to that attained using standard peak-FWE control. To
complement this measure, we also plotted ΦFWE(di) against Φproc(di)
(cf, a ROC curve). In these plots, a loss of spatial accuracy, relative to
the FWE threshold means that for any distance, the number of
discoveries Φproc(di)bΦFWE(di) will fall and the resulting curves will
lie above the Φproc=ΦFWE diagonal.

These two measures collectively summarize spatial accuracy.
Note that spatial accuracy can always be increased at the ex-
pense of increased conservativeness by raising the height thresh-
old u. This is because higher thresholds admit a fewer regions
into the excursion set by chance, leaving a higher prevalence of
regions with true underlying activation. Therefore, we also exam-
ined rpeak=dim(Dproc)/dim(DpeakFWE), the ratio of total peak-FDR
and peak-FWE discoveries, irrespective of whether they are spatially
accurate or not. As there are no convenient analytic results for Di, we
proceed with simulations.

Simulations and comparative evaluations

In this section, we present comparative evaluations of the different
decision procedures using exactly the same simulated signal and error
processes. We generated SPMs with 15 degrees of freedom by
simulating 16 volumes of data and applying a voxel-wise t transfor-
mation. The data were a linear mixture of smooth signal and smooth
noise. The noise was formed by convolving random number fields,
sampled fromaunit normal distribution,with aGaussian kernel of four
voxels in width. Signal was simulated by convolving (delta) stick
functions with Gaussian kernels and adding them to the noise. We
used a range of true activations n∈{2,4,8,16,32,64}, distributed
uniformly at random over the search space. Each activation was
generated by convolving a stick function at a randomly chosen voxel
with a Gaussian kernel of variable width. The height of these functions
was sampled from the chi-squared distribution with one degree of
freedom. The width of the Gaussian kernel was sampled from a
truncated Gamma distribution (truncated at four) of mean four and
variance sixteen (shape and scale parameters of one and four
respectively). The signal therefore comprised activations of positive
height and varying width that was lower bounded by the smoothness
of the noise.

We computed the adjusted p-values controlling family-wise error,
the uncorrected voxel, peak and cluster p-values and their BH
thresholds. The last two p-values require the pre-specification of a
height threshold u, which we varied between 2.5 and 5.5. We then
computed Di, the distance to the nearest true activation, for each
activation discovered by the peak-FWE, peak-FDR, cluster-FDR, voxel-
FDR procedures; all at 0.05 threshold. To ensure the distributions of
distances were comparable across the four thresholding techniques,
we only considered distances between true activations and peaks in
the SPMs. This means that we ignored voxels in the voxel-FDR
analysis that were not maxima and included all peaks in significant
clusters in the cluster-FDR. Note that generally, one would elect to
control either FDR on clusters (i.e., regions) or peaks. Given that
clusters and peaks are distinct topological features, the ensuing
inferences are categorically different. However, our assessment of
spatial accuracy can be applied to both clusters and peaks because
each cluster must contain one or more peaks.

We simulated 2000 SPMs and accumulated the distribution of
minimum distances, pproc(di) corresponding to the random variables
Di associated with the discoveries from each procedure (proc).

Results

Fig. 1 (left) shows ΦFWE(di), the cumulative distribution function
of minimum distance from observed to true maxima as disclosed by
peak-FWE control. It can be seen that 95% of discovered activations
fall within a FWHM of a true maxima in the underlying signal,
irrespective of the number of maxima in the underlying simulation
(plots for n=2, 4, 8, 16, 32, 64 are superimposed). Rows in the right
hand panel (Fig. 1) give two complementary measures that contrast
spatial accuracy of (a) peak-FDR, (b) cluster-FDR and (c) voxel-FDR
with respect to the peak-FWE reference. The former two require a
feature-defining threshold, here 2.5. Irrespective of the number of
activations in the underlying signal they show that peak-FDR is less
accurate than cluster-FDR, which is in turn less accurate than peak-
FDR. The latter is practically indistinguishable in its spatial accuracy
from peak-FWE. As the threshold is increased to 3.5, 4.5, 5.5 (Figs. 2,
3, 4) the spatial accuracy of cluster-FDR increases. The spatial
accuracy of peak-FDR with respect to peak-FWE is at ceiling with
respect to peak-FWE throughout.

To characterise the sensitivity of the FDR procedures relative to the
peak-FWE procedure, we then examined rpeak, the ratio of total
discoveries. Fig. 5 shows that for any threshold u and any number of
activations n, voxel-FDR is more sensitive than extent-FDR, which in
turn is more sensitive than peak-FDR. Peak-FDR tends to become
more conservative with higher thresholds or fewer true activations.
Providing the feature-inducing threshold u is not too high (here
approximately ub5) peak-FDR is more sensitive than peak-FWE (top
left). The imperative to use a low threshold must, of course, be
balanced against the assumptions of random field theory, which
require a reasonably high threshold.

In summary, these results validate peak-FDR and illustrate the
conditions under which it is more sensitive than conventional FWE
control. This increased sensitivity incurs a negligible cost in terms of



Fig. 1. This figure shows the rate at which, in comparison to peak-FWE, peaks identified by various FDR procedures lie beyond a distance d in mm of the true signal peak. These results
suggest uniformly higher spatial errors for all FDR procedures. For topological FDR, the relative displacement errors are small: Left: the cumulative density function (cdf) of
displacement errors from conventional peak-FWE under n=2, 4, 8,16, 32, 64 true activations. Right: the first column plots the cdf from the FWE procedure against the cdf of the FDR
procedures (in the case of peak- and cluster-FDR, the feature-inducing threshold u=2.5). A procedure has less spatial accuracy than peak-FWE when these functions lie above the
dotted lines. The second column plots the difference in cumulative densities as a function of distance. Here, inaccuracy means a difference that is greater than zero. The three rows
compare peak-FWE with peak-FDR, cluster-FDR and voxel-FDR.
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accuracy or false positives (see Fig. 1). Strictly speaking, the true voxel-
wise FDR must be zero if the signal is unbounded. However, there is
nothing to prevent us considering the voxel-wise BH procedure as a
candidate for furnishing statistical control over topological inferences
(here the number of peaks in the excursion set). Evaluated from this
perspective we see that conventional voxel-FDR discovers more local
peaks than conventional FWE control (Fig. 4), but only at the expense
Fig. 2. Same as the right panels in Fig.
of spatial accuracy (or failure to control discoveries that are false under
a spatial criterion).

An illustrative application

In this section, we illustrate the application of the four procedures
above to an empirical fMRI data set. We use a standard data set, which
1 but using a threshold of u=3.5.



Fig. 3. Same as Fig. 2 but using a threshold of u=4.5.
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is available from http://www.fil.ion.ucl.ac.uk/spm, so that readers
can reproduce the analyses below. These data have been used
previously to illustrate various developments in data analysis.

Subjects were studied with fMRI under identical stimulus condi-
tions (visual motion subtended by radially moving dots) under
different attentional tasks (detection of velocity changes). The data
were acquired from normal subjects at 2-Tesla using a Magnetom
VISION (Siemens, Erlangen) whole-bodyMRI system, equippedwith a
head volume coil. Contiguous multi-slice T2⁎-weighted fMRI images
were obtained with a gradient echo-planar sequence (TE=40 ms,
TR=3.22 s, matrix size=64×64×32, voxel size 3×3×3 mm). The
Fig. 4. Same as Fig. 2 but usin
subjects had four consecutive hundred-scan sessions comprising a
series of ten-scanblocks underfivedifferent conditionsDFAFNFAFNS.
The first condition (D) was a dummy condition to allow for magnetic
saturation effects. F (Fixation) corresponds to a low-level baseline
where the subjects viewed a fixation point at the centre of a screen. In
condition A (Attention) subjects viewed 250 dots moving radially from
the centre at 4.7 degrees per second and were asked to detect changes
in radial velocity. In condition N (No attention) the subjects were asked
simply to view the moving dots. In condition S (Stationary) subjects
viewed stationary dots. The order of A and N was swapped for the last
two sessions. In all conditions, subjects fixated the centre of the screen.
g a threshold of u=5.5.

http://www.fil.ion.ucl.ac.uk/spm


Fig. 5. These plots describe the relative number of discoveries with three procedures; peak-FDR (top left), cluster-FDR (top right) and voxel-FDR (bottom left), compared to
conventional peak-FWE. Each plot describes the dependence of this relative-sensitivity measure on the number of underlying activations (n=2, 4, 8, 16, 32, 64) under a range of
feature-inducing thresholds (u=2.5, 3.5, 4.5, 5.5 ). For any threshold u and any number of activations n, voxel-FDR is more sensitive than cluster-FDR, which in turn is more
sensitive than peak-FDR. Providing the feature-inducing threshold u is not too high (here approximately ub5) peak-FDR is more sensitive than peak-FWE.
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In a pre-scanning session the subjects were given five trials with five
speed changes (reducing to 1%). During scanning there were no speed
changes. No overt response was required in any condition. Data from
the first subject are used here. We smoothed the data with Gaussian
FWHM of 4, which is typical for single-subject fMRI.

Fig. 5 shows the results of conventional SPM analyses, using a
linear convolution model formed by convolving box-car stimulus
functions with a canonical hemodynamic response function and its
temporal derivative. The stimulus functions encoded the presence of
photic stimulation, visual motion and attention. The SPMs in Fig. 6
test for an effect of motion and in trans-axial slices though V5 or
human MT. The four SPMs are thresholded at 0.05 using peak-FWE,
peak-FDR, cluster-FDR and voxel-FDR. The feature defining threshold
was u=3.

These SPMs recapitulate the general features seen in the simula-
tions. The number of peaks in the whole brain surviving each of these
thresholds increases monotonically from 27 (peak-FWE) to 96 peaks
(voxel-FDR): peak-FWEbpeak-FDRbcluster-FDRbvoxel-FDR.

Discussion

In this note, we have presented a topological FDR procedure that
can be applied to peaks in an SPM. This is homologous to equivalent
random field theory adjustments that assign corrected p-values to
maxima and thereby control the false-positive rate of peaks. This
procedure finds more peaks than FWE with a negligible cost in terms
of spatial accuracy. In comparison with conventional voxel-wise FDR-
control procedures, the peak-wise FDR control has fewer false
positives and can be applied when signal or treatment effects are
distributed in a continuous fashion over tests of voxels.

To quantify the performance of false-discovery rate schemes one
needs to define, operationally, what one means by a true or false
discovery. This is, in fact, a difficult problem in the context of
continuous signals because there is no necessary one-to-one relation
between the topological features of signal and the associated SPM.
This is true irrespective of the multiple comparisons procedure. In
other words, even using conventional control over family-wise error,
one can never make an inference about where a signal came from.
However, anecdotally, people usually associate the location of a peak
in the SPM with the source of the underlying signal. We have tried to
capture this anecdotal association by looking at the distribution of
the distances between true activations and discoveries, under a
number of different thresholding procedures. This avoids labelling
voxels as true or false, while using a metric that relates the
discoveries to true underlying activations. One might have defined
a discovery as true or false by simply thresholding the known signal
and requiring true discoveries to lie over thresholded signal.
However, this implicitly defines an activation as signal above some
specified threshold, which is unknown. Furthermore, we could
arbitrarily adjust the true and false discovery rates by changing the
threshold used to define activation. For example, a very small
threshold would mean that all discoveries were true discoveries and
the FDR would be zero. Conversely, a very high threshold would
mean that all discoveries were false and the FDR would be 100%. The
advantage of using topological features like maxima is that they do
not require an arbitrary threshold on signal for their definition.



Fig. 6. SPMs thresholded according to (a) peak-FWE (b) peak-FDR (c) cluster-FDR (d) voxel-FDR.
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Having said this, our uncorrected p-values do require a threshold to
define an excursion set for subsequent topological FDR control.
However, this threshold is applied post hoc to the statistical process,
not to the signal.

We have emphasised the implications of signal with unbounded
support because this lies at the heart of topological inference and
distinguishes statistical parametric mapping from conventional
approaches to large families of statistical tests. In a conventional
setting, each test (i.e., voxel) can be declared significant. This is not
the case in topological inference because only topological features
are tested. This is called for when treatment effects (e.g., activa-
tions) are distributed in a continuous way over tests (e.g., voxels).
This is what topological inference (SPM) was developed for.
However, signals do not always have unbounded support; and
even if they did mathematically, they may not in practice (e.g., after
smoothing, the height of a signal will be trivially small a few FWHM
from its centre. Similarly, finite-support smoothing preserves
compactness; i.e. some voxels may have no signal after smoothing).
Does this mean topological FDR is contraindicated when smooth-
ness is small? No, a small smoothness means the number of peaks
increases and topological FDR will approximate the results of
conventional FDR control on voxels. However, the converse is not
true; if the signal is distributed, conventional FDR (as currently
applied in neuroimaging) is compromised. This is because the FDR
of voxels is generally smaller than the FDR of regional responses, for
any given threshold.

The concept of distributed signal is not introduced to undermine
the appropriate use of voxel-wise methods in certain cases: “All
models are wrong, but some are useful” (Box and Draper, 1987).
However, if continuous regional effects are of interest, then one
requires statistical error-control of regional inferences. The regional
error-control performance of voxel-wise methods can be verified
post-hoc on a case-by-case basis (according to some definition of
regional activation). For example, voxel-wise Bonferroni control
incidentally guarantees error-control on regional peaks as we have
defined them (e.g. Nichols and Hayasaka, 2003). Conversely, voxel-
wise methodsmay fail to control regional error rates in other contexts
(Chumbley and Friston, in press ).

In conclusion, we have supplemented our previous report of FDR
control based upon the spatial extent of clusters to include a
procedure that assigns FDR q-values to maxima within SPMs. We
have quantified the performance of this procedure in terms of the
spatial specificity of the ensuing discoveries and, providing the
excursion threshold is sufficiently low, found it to perform largely
as expected. Our conclusions, however, depend upon the particular
model for signal used in our simulations. This dependency highlights
the difficulty of assessing FDR procedures in general and, in particular,
the sorts of signals entailed by neuroimaging.
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Software note

The topological FDR procedures based upon spatial extent and
peak values will be implemented in SPM8 and SurfStat, which is
available as academic freeware from http://wwww.fil.ion.ucl.ac.uk/
SPM and http://www.math.mcgill.ca/keith/surfstat.
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