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In this work, we propose statistical methods to perform inference on the spatial distribution of topological
features (e.g. maxima or clusters) in statistical parametric maps (SPMs). This contrasts with local inference
on the features per se (e.g., height or extent), which is well-studied (e.g. Friston et al., 1991, 1994; Worsley et
al., 1992, 2003, 2004). We present a Bayesian approach to detecting experimentally-induced patterns of
distributed responses in SPMs with anisotropic, non-stationary noise and arbitrary geometry. We extend the
framework to accommodate fixed- and random-effects analyses at the within and between-subject levels
respectively. We illustrate the method by characterising the anatomy of language at different scales of
functional segregation.
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Introduction

The paradigm of functional segregation in cognitive neuroscience
entails differential engagement of distinct brain regions. An example
is the famously problematic hypothesis that region Q is engaged and
region R is not activated; i.e. functional specialisation or segregation.
This segregation of specialised or functionally selective responses in
the brain requires that responses are specific to certain brain regions.
We will refer to this as ‘regional specificity’. Mass-univariate
approaches (like SPM) cannot address regional specificity, because
one can never infer R is not activated (i.e., accept the null). There is a
general paucity of methods for addressing hypotheses about the
specificity of distributed effects in neuroimaging. Historically, the SPM
school calls on the so-called ‘topological’ rather than spatial inference,
which considers topological features of statistical parametric maps
like maxima or regional excursion sets, as opposed to individual
voxels (e.g., Chumbley et al., 2010). The present work is inherently
multivariate in that it harvests statistics from different parts of the
brain, and can provide an answer to the question: is region Q more
engaged than region R, in terms of ‘event’ density, where ‘events’ are
general data-features whose spatial distribution can be assumed
under the null.

Clearly, to make an inference that one part of the brain responds
more than another part, we have to consider regional responses. This
takes us out of the mass-univariate (voxel-based) inference frame-
work used by SPM and obliges us to define the regions entailed by
relative regional effects. This definition relaxes the dependence on
spatial smoothing that is an integral part of most conventional SPM
analyses: to the extent that experimentally-induced responses are
conserved spatially over subjects, they can combine to give significant
group effects in between-subject SPM analyses. One motivation for
smoothing is to ensure responses from each subject overlap by
smearing them. This requires effects in different subjects to be close,
relative to the scale of the smoothing kernel. In turn, this induces the
problem of optimising the scale of the kernel and leads to the notion
of scale-space searches (Poline and Mazoyer, 1994a,b; Worsley et al.,
1996). Here, we eschew this problem by only requiring that responses
fall predominantly within pre-defined regions (e.g. Brodmann's
regions). Regional summaries of per subject ‘events’ can then be
assessed in relation to each other to provide inference at the spatial
scale of the parcellation scheme chosen.

We focus on the special case when ‘events’ are maxima/peaks of a
real-valued SPM, resulting from the estimation of a general linear
model (GLM) point-wise over the brain. Assuming that randomness in
the component fields (i.e. error fields) of the GLM take the form of a
Gaussian-field, closed-form solutions for the rate of local maxima in
the SPM exceeding some arbitrary height have been derived using
random field theory (RFT: e.g. Friston et al., 1991, 1994;Worsley et al.,
1992, Worsley et al., 2004). This number has been shown, in the limit
of high thresholds, to have a Poisson distribution (Adler and Hasofer,
1981, Theorem 6.9.3, p. 1611). According to the ‘Poisson clumping
heuristic’, high maxima of an SPM are distributed over space
according to a Poisson process. This result is used to control family-
wise error in SPMs, with the aim of identifying surprisingly high or
broad excursions. We will use it here to a different end.

Other methods have been put forward to provide meta-analysis
of spatially distributed local maxima/peaks (Wager et al. (2009)
and Eickhoff et al. (2009)). These approaches convolve observed
peak locations with a kernel and examine overlap between studies.
Our method replaces the free parameter of kernel width with a pre-
defined parcellation of the search space into scientifically mean-
ingful brain regions. Under different assumptions, both Thirion et al.
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(2007) and Xu et al. (2009) both provide useful methods for
inferring inter-subject effects. Our approach differs in the following
way. The basic idea we pursue is simple: if the information in an
SPM is contained in the local density of peaks, the variations of this
density can be detected by simple counting statistics. This means we
can identify experimentally-induced changes in spatial patterning
over a partition or set of pre-specified regions. Here the spatial
distribution of supra-threshold events can be earmarked as
surprising, even when the existence of each event is not. The
method is not concerned with the absolute number, the height or
spatial extent of individual activations: It addresses only the spatial
distribution of events over the partition as a multivariate summary
statistic. The proposed approach provides a control on the relative
density of ‘hits’ across the brain volume: if (say) all the brain is
active, the proposed method will report regions that are more
active. Thus the regional specificity control allowed by the proposed
approach is a relative control.

In what follows we first introduce some definitions and define the
Poisson Process upon which inference is based. We then relate these
to the task of refuting chance patterning of peaks in one ormore SPMs.
We then show that the approach has acceptably low error using
simulated data. Finally, we use real data to show that the method can
be more powerful (identify more regionally specific responses) than
conventional analyses using RFT.
Theory

Set-up and preliminaries

Let an SPM be defined on ApℜD. Now partition A into regions, A=
{Aj}j∈1,…,n and let dj indicate the integer number of events in Ai. Under
any (e.g. non-isotropic) null SPM, this number depends on the
‘statistical volume’ of Aiwhichwe denote |Aj|..For an isotropic SPM, |Aj|
is directly proportional to the physical volume of Aj. Otherwise, the
measure of the j-th region |Aj| is its RESEL count and is estimated easily
using conventional techniques (Worsley et al., 1999; Taylor and
Worsley, 2007). See Appendix 1 for details.
The Poisson clumping heuristic

A point-process over A is a homogenous Poisson process if and
only if the joint distribution d=[d1,…dn] over any fixed partition A=
{A1, ...,An} is a mutually-independent Poisson-distributed random
vector with emission rate λN0; i.e. dj∼Poisson(λ|Aj|). For our
purposes, the crucial property of a homogenous Poisson process is
that events fall uniformly and independently over space (see
Appendix 2). As a consequence, if we are given the total event
count, d1+...+dn=k, the joint distribution of event counts is
multinomial

p d jað Þ = k
d1!d2!…dn!

∏n
j = 1a

dj
j

aj =
jAjj
jAj :

ð1Þ

In resel-space, the spatial deployment of maxima follows a
homogenous Poisson process (see Taylor and Worsley, 2007). We
therefore make heavy use of Eq. (1) as a likelihood model for spatial
patterning over a pre-specified partition of the SPM.With a likelihood
model, which embodies our expectations about spatial patterning
under the null, we can now disambiguate observed spatial inhomo-
geneity as arising from noise versus signal.
The likelihood model

Consider two models Mi:i 0,1, which postulate null uniform and
alternative non-uniform spatial patterns of events. M0 supposes that
the expected proportion of events falling in region Aj is simply the
relative regional resel count aj:∑aj=1. In contrast, M1 allows
experimentally-induced departures from uniformity; the expected
proportion of events in Aj can be anything and is denoted by
θj:∑θj=1. Here the vector θ=[θ1,…θn] describes the probability
that a given event will fall in each of the n regions. The strategy of this
paper is to represent and update beliefs about θ. Before proceeding
with a Bayesian treatment, we comment in passing on classical
inference using this model:

Classical decision schemes to reject the null-patterning

H0 : θ = a
H1 : θ≠a ð2Þ

are easy to implement using theχ2 test of multinomial outcomes. This
requires a moderate number of events in each region, which can be
assured using a low threshold or regions with large resel counts. An
interesting special case is the bipartition A={A1,A2}. Imagine that
some small, pre-specified region is of interest and the complement of
this region (the rest of the brain) completes the partition. Knowing
that there are k supra-threshold events in thewhole brain, d1 of which
observed in the small volume, we can easily calculate classical ‘p-
values’ for the observed pattern, under the null:

p d jH0ð Þ = ∑
k

i=d1

Binomial i; k; a1ð Þ: ð3Þ

Extensive simulations (not reported here) reveal this p-value
tends to be slightly less conservative than set-level inference (Friston
et al., 1996) on the small volume A1. Set-level p-values are based on
random field theory and report the probability of observing a given
number of ‘events’ k, above some pre-specified height and size
threshold in a volume of measure |A|. We now turn to the Bayesian
inference, which allows us to develop hierarchical models with a
wider domain of application.

Bayesian inference

We are initially agnostic about the null and alternative models
p Mið Þ = 1

2
: i∈0;1 and use Bayes theorem to update their relative

credibility a posteriori to observing the SPM. Here, p(Mi) is the a priori
belief that Mi is the correct model and the posterior is:

p Mi jdð Þ = p d jMið Þp Mið Þ
∑i p Mi;dð Þ : ð4Þ

This update requires the integrated likelihood or evidence:

p d jMið Þ = ∫p θ;d jMið Þdθ = ∫p d jθð Þp θ jMið Þdθ ð5Þ

which penalises complexity and ensures that M1 is not unfairly
advantaged (e.g. Rasmussen and Ghahramani, 2000— and see below).
Under the Poisson clumping heuristic, we take the likelihood to be (cf
Eq. (1)):

p d jθð Þ = k∏n
j = 1

θ
dj
j

dj!
: ð6Þ
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And the priors are determined by the model:

pðθ jM0Þ = δðaÞ
pðθ jM1Þ = DirðcmÞ: ð7Þ

Here δ(⋅) is a degenerate distribution, zero everywhere but for its
argument. This specialises Eq. (5) to Eq. (1). Dir(cm) denotes the
Dirichlet prior on θ where m gives the prior mean and c relates to the
prior precision (see below for more details on the Dirichlet). In the
present context we specify an uninformative Jeffries Dirichlet prior in
which each element of this n-vector is set equal to 1/2 (Jeffreys, 1946,
1961). This uninformative Dirichlet does not favour any particular
pattern over any other in contrast to the informed null model, which
assumes one pattern (i.e. θ=a). These models therefore have
different implications for predicted observations d (Eq. (5): the
‘prior's prediction’). Intuitively, the uninformative prior distributes
probability mass diffusely over the set of possible patterns. By
contrast, the informative prior apportions high probability to any
observed data pattern d close to a at the expense of patterns far away.
This is the mechanism behind [Bayesian] Occam's Razor: informed
models are less surprised by data near a, relative to data that deviate
from a.

To see this concretely, consider a bipartition (e.g., over brain
hemispheres) and two mean-a priors, one with highly concentrated
prior mass c=∞ (i.e., the null model M0) and one with lower
concentration c≪∞. It can be shown that under our priors, the
dispersion of the distribution given in Eq. (5) is:

d ja; cð Þ = kað1−aÞ 1 +
k−1
c + 1

� �
: ð8Þ

The first (null) model thus has competitive advantage over the
alternative (i.e. attributes higher probability in Eq. (5)) for any data
consistent with the prior expectation a. This implements Occam's
razor. In this example, model selection reduces to comparing two
distributions with equal means and different variances, so that the
null model is preferred when the data fits the model, while the
converse model is preferred otherwise. A more general result for the
predictive variance–covariance of the Dirichlet-multinomial is given
in Tripsiannis et al. (2002).

This scheme provides a simple way to make inferences on models
and test hypotheses. Model evidence however is a gross measure:
strong evidence for non-uniform patterning can arise from an excess
of events in just one (or more) region of the partition. The success of
the alternatemodel, as judged by its higher evidence (i.e. a large Bayes
factor) can further be explained by examining the posterior density on
its parameters: p(θ|d,M1)∝p(d|θ,M1)p(θ|M1), which encode each
region's relative propensity to emit an ‘event’. Inference on regional
parameters can be finessed with appropriate adjustments to posterior
confidence, if we infer on a large number of parameters (see below).
In what follows, we consider Bayesian inference on single SPMs and
multiple SPMs acquired from different subjects under the same
conditions.

Multi-subject models

So far, we have only considered inference on a single SPM (e.g.
from one subject). The strategy for multi-subject analyses depends on
one's belief about between-subject variation. If all between-subject
variation in spatial patterning arises from noise (i.e. the form of any
structured inhomogeneity is conserved over subjects), a fixed-effects
strategy is appropriate. This motivates pooling of data (i.e., regional
event counts) over subjects, because the subject index is not
informative of true variation. Alternatively, if we believe there is
true inter-subject variation in regional patterning, one can pursue a
random-effects (RFX) strategy. In this case, pooling must be more
qualified: subject indices carry information about true variation and
inference focuses on the population mean. We first generalise the
formulation above to accommodate subject-specific indices. We then
describe two schemes that are suitable in the fixed and random-
effects cases.

Let Ai={Ai1, ...,Ain}:i=1,…,I now represent the partition of the i-th
subject. As above, underM0, the Aij govern the probability that a given
event in the i-th subject will fall in region j or, equivalently, the
expected fraction of events falling in region j. Under M1, the
corresponding probability is θij :∑ jθij=1; the vector θi now
describes, for the i-th subject, the probability of a given event falling
in each of the j=1,…,n regions, assuming there is experimentally-
induced patterning. Notationally, the i-th subject data now yields data
di. Henceforth, we redefine d=[d1, ....,dn] to denote the entire data-set
over subjects.

Fixed-effects models

Under fixed effects (FFX), subject-specific indices are uninforma-
tive regarding putative patterning and can be ignored. Pooling over
uninformative subject-specific indices, we can define Aj=∪ iAij.
Inference on this ‘hyper-subject’ now reduces to the scheme described
above, by simply pooling regional resel and event counts over
subjects. (The values dij are summed over j to yield a ‘summation
subject’, in which between-region effects can be detected.)

Random-effects models

If we believe that there is real between-subject variation in
patterning, we can use our random sample of subjects to infer on the
population from which they came. It is convenient to assume a
parametric form for the population. Here, we assume they are
distributed according to a Dirichlet, whose parameters we aim to
infer. The parameter vector θi=[θi1,…,θin], which characterises the
pattern of the i-th subject is therefore sampled from:

p θi jc;mð Þ =
Γ ∑

n

i=1
cmj

� �

∏n
j = 1Γ cmj

� � ∏n−1
j = 1θ

cmj−1
ij

� �
1−∑

n−1

j=1
θij

 !cmn−1

mj = E θij
� �

: ∑mj = 1

∑n
j = 1θij = 1 : ∀i:

ð9Þ

Where Γ is the gamma function and θijN0:∀i, j. The components of
m=[m1,…,mn] define the proportion of events in each region,
expected over subjects in the population. Here, mj is the regional
population mean we seek, around which subjects vary according to a
Dirichlet whose variance is controlled by cN0. Again, if there was no
systematic, experimentally-induced spatial patterning at the group
level, m=a is simply equal to the relative resel counts, by the
preceding arguments. For Bayesian inference on these quantities, we
represent our a priori uncertainty about the population parameters
with p(m,c).

Model comparison is more problematic in the random-effects case.
In particular, the integrated likelihood has no analytic solution. For
convenience, we restrict inference to the population means mj rather
than models Mi. As we shall see, this does not pose an obstacle to
useful inference at the population level. Under RFXmodels, we can ask
whether, on average, individuals deviate from null-patterning, for any
region as follows. First, we consider the set of marginal distributions
p(mj|d)=∫p(m,c|d)dcdm∼ j, where m∼ j is the vector of population
means, except for region j. We can obtain a stochastic approximation
to this integral (to arbitrary precision) via well-understood methods
(see Appendix 3). From these we can derive confidence intervals; e.g.
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CS95(mj) that can be penalised for multiple inferences, as described
next. This permits us to identify regions with an unusual density of
events. We note that classical RFX analysis, under the same Dirichlet
assumptions about the population, may be achieved via frequentist
results found in Paul et al. (2005).

Inference on regional parameters

When making separate inferences about regional parameters, we
encounter a multiple comparisons problem, if we use a high posterior
confidence that mj≠aj (or θj≠aj) to declare a region ‘significant’.
Note when we compare models there is no multiplicity problem.
There is only one model comparison and the integrated likelihood is
automatically penalised in relation to the number of free regional
parameters. From one perspective, parameters play an auxiliary role
in quantifying why the null pattern has been rejected by model
comparison; in this view, parameter inference per se is unnecessary.
However, from the perspective of inference on parameters (under a
selected model), it may be desirable to seek some form of control at
the parameter level if each parameter is reported in relation to its
marginal posterior. This is particularly important if no omnibus test
(e.g., Bayes factor) is available and there are many parameters.

With this in mind, recall that an ‘x% Bayesian confidence interval’
summarises where x% of our posterior belief in the true parameter lies.
Under our RFX model, the posteriors p(m|d) and p(mj|d) are unimodal
(the Dirichlet distribution is a convex function of m because it is in the
exponential family); this also applies to our FFX model. Therefore, we
use central confidence intervals for both FFX and RFXmodels.With two
regions (with one degree of freedom because regional parametersmust
sum to one), these confidence intervals exclude extreme tails attributed
with ε=(1−x) net credibility. Consequently, we choose to penalise
(increase) confidence intervals according to the number of regions
minus one by enforcing ε=(1−x)/(n−1).We do not want to justify a
Bayesian approach in terms of frequentist error control, whichwould be
inappropriate. However, as we will show, under the conditions of our
simulation, our approach incidentally provides frequentist control of
false detections.Unless otherwise stated, we use x=99%.

A note on informed models

In the preceding sections, we described schemes for evaluating the
mismatch between an observed pattern and that estimated under
vague prior assumptions. In some situations, one may have a precise
alternativemodel or hypothesis. This could be derived from the spatial
profile m1 observed in an independently replicated experiment.
Precise or informed alternative models are easily accommodated in
the FFX analysis by substituting a degenerate Dirac delta for the prior:
p(θ|M1)=δ(m1) (assuming high confidence about m1). With RFX
models, precise priors p(θ|m,M1)=δ(m1) finesse the complications in
evaluating the integrated likelihood and enable straightforward RFX
model comparison: having specified m under the null and alternative
hypotheses, the model evidence obtains by integrating the likelihood
with respect to the population means (trivial by exploiting Dirichlet-
multinomial conjugacy) and the scalar c (integrated with any simple
numerical scheme). Note, by definition, the parameters of an informed
model (such as the null) are specified by the hypothesis. There is
therefore no component-wise inference on their parameters; infer-
ence is between two hypothetical patterns. We will explore the
applications of informed model comparison in future work.

Simulations

Frequency evaluations

Bayesian error control, imposed by integrating the data-
likelihood under vague priors, does not aim to satisfy Frequentist
criteria (e.g. control the false-positive rate). It is nevertheless
interesting to examine how strongly the results depend on the
inferential scheme. In this section, we simulate experimental data
and evaluate the Frequentist behaviour of our Bayesian scheme. We
explore this behaviour in the absence of experimentally-induced
patterning, by generating data with no signal. For each of 84
volumes in the simulated experiment, independent unit-variance
Gaussian noise was introduced onto a 64×64×64 regular lattice.
We induced non-stationarity with piecewise constant smoothing
over twenty random regions; obtained through a Voronoi parcella-
tion diagram with random seeds (Flandin et al., 2002). Each region
was smoothed independently with its own full width half maximum
FWHM drawn uniformly on the interval [4, 10] mm. To preclude
sharp transitions at regional boundaries, we then smoothed the
entire image again with a Gaussian kernel (FWHM of 2 mm). This
was repeated 1000 times to create surrogate data under the null
hypothesis. We then fitted GLMs with a simple mean effect and
collected the ensuing t-fields or SPMs.

We randomly sampled L=150 groups of 20 simulated subjects
from our corpus. For each of these simulated experiments and ensuing
SPMs, we defined ‘regions of interest’ by randomly selecting a fixed
number of N regions from the AAL anatomical parcellation scheme
(Tzourio-Mazoyer et al., 2002). N {5,10,15,20}. We used the union of
the remaining regions in the AAL parcellation (i.e., the rest of the
brain) as our final ‘region’. We calculated the regional resel counts of
each ‘region’ and the corresponding number of events above a height
threshold of three. We then assessed the Frequentist properties of
fixed- and random-effects inference.

Fixed effects

All rational decisions (e.g. ‘tests’) require some subjective notion of
utility/loss. Conventional decision thresholds are somewhat arbitrary
(e.g. set such that alpha=0.05). A threshold of 20 is the convention
for Bayesian decisions based on relative evidence (given a Bayes
factor). To begin, we defined a Bayes factor of twenty (i.e., very strong
evidence) as the threshold for accepting the alternative model. We
found that no Bayes factor from any of the simulated groups attained
this threshold for any N∈{5,10,15,20} regions. This indicates that
under our decision threshold and the conditions of our simulation, our
Bayesian procedure incidentally implies a low false-positive rate in
terms of model selection.

For inference onparameters,we estimatedof theFrequentist Family-
Wise Error Rate (FWER) using PðV≥1Þ = EðIðNÞÞ≈1

L
∑L

l = 1IlðNÞ. Here
I(N), Il(N), ..., IL(N) are identically distributed: the approximate equality
EðIðNÞÞ≈1

L
∑L

l = 1IlðNÞ says that expectation of interest is approximated
by the empirical average over L realised observations. Here the random
variable V denotes the expected number of frequentist errors in an
experiment, the indicator I(N)=1: VN0 (i.e. with one or more regions
whose penalised confidence intervals were inconsistent with the null)
and 0 otherwise. L is the number of simulated replications over which
we take the empirical expectation. We observed no FWER greater than
0.05 for any N∈{5,10,15,20} regions. FWER on regional parameters
were {0.013, 0.013, 0.046, 0.033} respectively. These findings indicate
that our procedure incidentally limits false-positive decisions on
regional parameters to a small rate.

Random effects

In the context of random-effects models, we restrict our analysis to
inferring parameters (not models). We used the RFX scheme to infer
regional parameters for the same set of null experiments. Again, for
each experiment, we counted the number of SPMs with one or more
parameters, whose penalised confidence intervals were inconsistent
with the null. We observed no FWER greater than 0.05, for any



Table 1
Language regions, over which we considered the patterning of events.

Region Abbreviated name

Precentral gyrus ‘Precentral’
Middle frontal gyrus F2 ‘Frontal_Mid’
Inferior frontal gyrus, opercular part F3OP ‘Frontal_Inf_Oper’
Inferior frontal gyrus, triangular part ‘Frontal_Inf_Tri’
Inferior frontal gyrus, orbital part ‘Frontal_Inf_Orb’
Fusiform gyrus ‘Fusiform’

Angular gyrus AG ‘Angular’
Superior temporal gyrus ‘Temporal_Sup’
Middle temporal gyrus T2 ‘Temporal_Mid’

Table 2
This table reports which regions, from those outlined in Table 1, were surprisingly short
of events or surprisingly rich in events using fixed and random-effects models. In this,
and subsequent tables, we only report regions whose regional parameter was greater
than expected by chance (with 99% posterior confidence).

Relatively sparse in peaks Relatively rich in peaks

FFX ‘Angular_R’ ‘Frontal_Mid_L’ ‘Frontal_Inf_Oper_L’
‘Temporal_Sup_R’ ‘Frontal_Inf_Tri_L’
‘Temporal_Mid_R’ ‘Frontal_Inf_Orb_L’

‘Frontal_Inf_Orb_R’
‘Fusiform_L’

RFX ‘Temporal_Mid_R’ ‘Frontal_Inf_Oper_L’
‘Frontal_Inf_Tri_L’
‘Frontal_Inf_Orb_L’
‘Frontal_Inf_Orb_R’
‘Fusiform_L’
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N∈{5,10,15,20} regions: the observed values were {0.006, 0.000,
0.043, 0.043} respectively.

Supplementary analyses of parcellation and data smoothing

The preceding validations consider partitions with a relatively
small number of areas. In some situations, we may have no priors on
the functional anatomy and prefer a more exploratory approach. It is
easy to validate the FFX procedure for many regions. We performed
the same simulation procedure described above, but with N=116;
i.e., the entire set of regions in the AAL. Our empirical estimate of the
FWER on regional parameters was 0.04, validating the method for
open-ended exploratory use.

Strictly speaking, data smoothing should have no effect on the
robustness of the scheme because we effectively work in RESEL space
(where the effects of smoothness are removed). More precisely, our
null model conditions on the RESEL count associatedwith each region.
This means the model does not depend on the degree of smoothing.
Nevertheless, smoothness will affect the production of maxima in
each individual SPM and therefore affect regional counting statistics.
To illustrate that the approach is robust to different levels of data
smoothing, we simulated 1000 SPMs using data smoothed with an
8 mm Gaussian kernel. Using the above procedure and under the
conditions of this simulation, we found a regional FWE of 0.003 and no
false model comparisons.

Applications: the regional anatomy of language

Motivation

A reliable measure of language laterality is important for both
basic and clinical research. Furthermore, lateralisation represents a
canonical example of a functional pattern one might want to make
inferences about. Language laterality in fMRI is usually assessed by
computing a Laterality Index (LI) that compares the relative
contribution of both hemispheres, during a given language task.
However, several methodological issues may confound the LI in
healthy and diseased populations; for a critical review see Seghier
(2008). All previous studies have assessed LI values based on either
extent (e.g. size of left or right activated regions that survived a pre-
defined threshold) or height (e.g. grouping statistical scores within a
region of interest). Our pattern perspective aims to infer the spatial
profile of local maxima, bypassing inference on extent or height of
local activations. This perspective may be more fitting, particularly for
laterality measures, in that it assesses the relative spatial distribution
of events. Laterality is a rather coarse characterisation of functional
localization. We therefore proceed to ask which specific language
areas, within a more fine-grained parcellation of the brain, show
laterality effects.

The task and data

We demonstrate our method on a data-set from previous work
(Seghier and Price, 2009). These data were obtained from 24
healthy subjects (9 males, 15 females, age: 36±18 years). All
subjects were native English speakers, had normal or corrected-to-
normal vision, with no history of neurological or psychiatric
disorders; and were right-handed as assessed with the Edinburgh
questionnaire (Oldfield, 1971). Over the block paradigm design
experiment there were 16 blocks presenting written object names
and 8 blocks presenting strings of unfamiliar Greek symbols, each
lasting 18.8 s with an additional 12 blocks of 14.4 s fixation every
two stimulus blocks. All stimuli were presented as triads (three
visual stimuli, with one target above and two choices below).
Subjects were asked to press a button indicating whether; (i) the
stimulus on the lower-left or lower-right was more semantically
related to the target above (e.g. is ‘truck’ or ‘ship’ most closely
related to ‘anchor’) or (ii) the unfamiliar symbols on the lower-left
or lower-right were visually identical to the target. All subjects
performed well on this matching task (performance=92±7%).

Data were acquired on a 1.5 T Siemens system (Siemens Medical
Systems, Erlangen, Germany). Functional imaging used an EPI GRE
sequence (TR=3600 ms, TE=50 ms, Flip=90°, FOV=192 mm,
matrix=64×64, 40 axial slices with 3×3×3 mm voxel size). Data
processing and statistical analyses were carried out with the
Statistical Parametric Mapping SPM5 software package (Wellcome
Trust Centre for Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.
uk/spm/). All functional volumes were spatially realigned, un-
warped, normalised to theMNI space, and smoothedwith an isotropic
6-mm FWHM Gaussian kernel, with a resulting voxel size of
2×2×2 mm. The pre-processed functional volumes for each subject
were then submitted to a conventional fixed-effects SPM analysis,
using a general linear model at each voxel. Each stimulus onset
(except fixation) was modelled as an event encoded in condition-
specific ‘stick-functions’. The resulting stimulus functions were
convolved with a canonical hemodynamic response function to
form regressors for the linear model. Our contrast of interest was
the main effect of semantic matching on words, relative to perceptual
matching on unfamiliar symbols. More details about this analysis and
the main effect of interest during semantic matching can be found
elsewhere (see Seghier and Price, 2009). Our task is used routinely in
clinics and reliably identifies language areas and functional laterality
(e.g. Seghier et al., 2004).

Data analysis

Our FFX model can be thought of as a limiting case of the RFX
model. In particular, as the between-subject variability decreases,
subject-specific spatial patterns fluctuate around a single ‘fixed’
value. We therefore deliberately chose a data-set with relatively
low between-subject variability, so that we can plausibly consider

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/


Fig. 1. Exploratory FFX analysis assuming a parcellation that includes all areas in the AAL, except cerebellum (see text). These 28 axial slices report regions deemed relatively rich
(sparse) in local peaks in red (green). In most slices, there is a relative preponderance of activations in the left hemisphere and deactivations in the right hemisphere.

Table 3
Surprising regions identified by an exploratory analysis.

Relatively sparse in peaks Relatively rich in peaks

FFX ‘Postcentral_L’ ‘Frontal_Sup_Orb_L’
‘Postcentral_R’ ‘Frontal_Sup_Orb_R’
‘Parietal_Inf_R’ ‘Frontal_Mid_L’
‘SupraMarginal_R’ ‘Frontal_Mid_Orb_L’
‘Precuneus_L’ ‘Frontal_Mid_Orb_R’
‘Temporal_Sup_R’ ‘Frontal_Inf_Oper_L’
‘Temporal_Mid_R’ ‘Frontal_Inf_Tri_L’

‘Frontal_Inf_Orb_L’
‘Frontal_Inf_Orb_R’
‘ParaHippocampal_L’
‘ParaHippocampal_R’
‘Amygdala_L’
‘Fusiform_L’
‘Temporal_Pole_Sup_L’
‘Temporal_Pole_Sup_R’
‘Temporal_Pole_Mid_L’
‘Temporal_Inf_L’

166 J.R. Chumbley et al. / NeuroImage 53 (2010) 161–170
both FFX and RFX models on the same data. To ensure this
homogeneity, we conditioned the sample on right-handedness, a
covariate known to induce important between-subject variability
(Pujol et al., 1999; Szaflarski et al., 2002). As we shall see, the
inferences under RFX and FFX were very similar. In general, the
latter expects, and accounts for, more sources of variability.
Therefore posterior inference is less confident: i.e., it returns a
smaller set of ‘significant’ regions. For all the analyses below, we
counted peaks above a height threshold of t=3. These event
counts served as the data-features of interest.

Fixed effects

We began by defining two regions for the entire right and left
hemispheres; excluding the cerebellum due to the crossed
cerebellar representation of laterality; and the mesial cortex near
to inter-hemispheric fissure (for more details see Seghier, 2008).
Using this hemispheric partition we obtained a Bayes factor of
2×1011 in favour of language lateralisation. At the level of
parameters, we found that the confidence interval for the average
proportion of ‘events ’ in the left hemisphere, CI(θ1)=
[0.525,0.553], was inconsistent with, that expected by chance
0.4962; i.e. that based on resel counts. On applying RFX analysis,
we again found that the confidence interval for the estimated
average fraction of events in the left hemisphere, CI(m1)=
[0.521,0.565], was inconsistent with that expected by chance
alone (0.4962). From either of these we conclude that there is
evidence for left-lateralization of language.

We then defined nine language-related regions in the left
hemisphere, based on previous meta-analysis studies (e.g. Cabeza
and Nyberg, 2000; Vigneau et al., 2006) and their homologous regions
in the right hemisphere. These are shown in Table 1, in the AAL
parcellation scheme (Tzourio-Mazoyer et al., 2002).

We used these regions to partition the brain into 19 areas (9
language bilateral regions and the remaining brain volume) to see
whether we could characterise lateralisation with greater regional
precision. Under FFX assumptions, we again found evidence for a non-
uniform pattern, with a Bayes factor of 1.149×1022. To understand
this result, we turned to the parameters. Table 2 lists those regions
that were surprising, in terms of the relative number of high peaks
observed using both FFX and RFX models.
Note that there is overlap between the regions returned by the
both analyses. As expected, high activity tends to be in the left
hemisphere and low activity tends to be in the right hemisphere.

To visualise the basis for these inferences about regional specificity
shown in Table 2, Fig. 1 illustrates the marginal confidence intervals.
These intervals pertain to the nine regions listed Table 2, bilaterally.
The blues lines correspond to the corrected 99% confidence intervals
for each region. (They are joined simply for ease of graphical
inspection.) The green dots are the relative RESEL count for each
region. The left panel corresponds to FFX analysis on θ, while the right
panel corresponds to RFX analysis on m. We can see from these plots
that some of the confidence intervals exclude the null (green dots).
For ease of visual inspection, we highlight such regions with
embolded confidence bounds (thick dots).

Exploratory analysis

For illustration, we then assumed nothing about the functional
anatomy engaged by the task comparison and use a more exploratory
approach, which is useful when there is little a priori knowledge of the
functional anatomy. In particular, we choose all regions, excluding the

image of Fig.�1


Fig. 2. This plot gives corrected confidence bounds (blue lines) and the null (relative RESEL count) setting for each of the 18 regions assessed. For ease of inspection, we highlight —
with thick solid dots — regional confidence intervals that exclude the null. The figure shows that several regions substantially deviate from null expectations. The regions are: left/
right ‘Precentral’ (1,2), left/right ‘Frontal_Mid’ (3,4), left/right ‘Frontal_Inf_Oper’ (5,6), left/right ‘Frontal_Inf_Tri’ (7,8), left/right ‘Frontal_Inf_Orb’ (9,10), left/right ‘Fusiform’

(11,12), left/right ‘Angular’ (13,14), left/right ‘Temporal_Sup’ (15,16), left/right ‘Temporal_Mid’ (17,18).
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vermis and cerebellum, as our partition. Table 3 and Fig. 2 report the
results. As before, there is a preponderance of left-hemispheric
regions that are relatively rich in events. Conversely, right-hemi-
spheric regions tend to be relatively sparser in high peaks. The
majority of these areas have been associated with language function
in other studies (e.g. Seghier et al., 2004; Vigneau et al., 2006).

Supplementary null and comparative analyses

As a final check on our model assumptions we analysed SPMs
based on real data that conformed to the null hypothesis: if our null
Poisson Process model is not tenable for real data, the fraction of
events found in each region should not be approximated by the
relative RESEL count. For each of 15 subjects we calculated an SPM
testing for the effects of a random covariate (independent draws from
the normal distribution). The results are null SPMs by construction.
We repeated this procedure ten times and were never able to reject
the null model, according to the decision procedures used above.

Finally, we compared the results from pattern inference with two
conventional whole-brain approaches based on the height and extent
of SPM excursion sets. To do this we computed an SPM of the t-
statistic, using the 24 subject-specific contrasts of parameter

image of Fig.�2
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estimates above. For both FWE adjusted thresholds, we catalogued all
AAL regions containing at least one supra-threshold voxel. Pattern
inference identified relative regional effects in five regions not
identified by either conventional SPM analysis:

• ‘Frontal_Sup_Orb_L’,
• ‘Frontal_Mid_Orb_R’,
• ‘Frontal_Sup_Orb_R’,
• ‘ParaHippocampal_R’,
• ‘Temporal_Pole_Sup_R’

Conversely, FWE procedures identified regions that were active in
absolute — but not relative — terms. Four regions were identified
using peak height (two of which showed regionally specific effects
based on pattern inference). Inference based on spatial extent
identified 29 regions (of which nine showed regionally specific
responses). This emphasises that inference about relative vs absolute
responses are distinct. In other words, inferring that a region has
responded does not necessarily mean the response is regionally
specific (i.e., not more than other regions).

Discussion

We have introduced a new method, which can identify experimen-
tally-induced changes in spatial patterning over a set of pre-specified
regions. Here, inference is on the spatial organisation of events (high
peaks) rather than their absolute number or the attributes (e.g., height
or extent) of individual activations. A positive decision about region Q
means that region Q is relatively sparse or rich in events, relative to the
rest of the search volume. Note that the interpretation is inherently
relative. The rest of the brain may or may not be activated in absolute
terms i.e. as determined by conventional peak or cluster-extent
methods. It is in this sense that the method infers patterns — attributes
of the SPM that are distributed over whole search volume. It therefore
differs qualitatively from existing methods, and is complementary to
them.While we have focused on patterns in SPMs of functional images,
the method is clearly applicable to structural (e.g. VBM) analyses, for
which there is also a clear null hypothesis (Ashburner and Friston,
2000). We have emphasised that pattern inference is on a region's
response relative to average the activity of other regions. Therefore, it
will not detect regionswhen there is a uniformly high absolute peak rate
(e.g. as inferred via set-level inference). In such conditions, rejecting a
regionally nonspecific (global uniform)hypothesis ismore conservative
than rejecting a (global null) hypothesis that no region has responded.

Note that the model underlying pattern inference does not, strictly
speaking, assume independence of counts across regions: given the
total count, components of a multinomial random vector have
negative covariance. For region-wise tests, this negative dependence
means that falsely inferring an event excess in one region increases
the chance of inferring event dearth in the remaining regions. Our
simulations indicate that the n−1 penalty furnishes appropriate
control, despite this dependence. Its success is not surprising, given
the formal similarity of this penalty to Bonferroni-correction, which
holds under arbitrary dependence.

To assess the evidence for experimentally-induced spatial pat-
terning over a set of pre-specified regions, we must account for two
confounding explanations: (i) spatial inhomogeneity in the SPM and
(ii) the relative volume of cells. We exploit an established measure of
‘statistical’ volume (the resels-per-voxel image) to attain a volume
measure that effectively removes local variations in the geometry of
statistical dependencies, under the null. We use this in conjunction
with the Poisson clumping heuristic to elaborate a hierarchical pattern
model, which affords inference on both model and parameter
(pattern) space; at the within or between-subject level.

As an illustration, we applied the method to ask whether a
language task influences the pattern of event in the ensuing SPMs.We
identified specific regions of a language network that had a
surprisingly low or high proportion of events, given their volume. In
particular, left-hemisphere regions tended to be relatively rich in
events, and right-hemisphere regions were relatively sparse. It is
noteworthy that there was close agreement between RFX and FFX
inferences. This is partly because our FFX is naturally robust to local
(within region) functional heterogeneity over subjects; it sees only
the regional count. Only heterogeneity between different regions
would benefit from an explicit random-effects model. Additional
factors limiting functional heterogeneity (e.g. when considering
functionally conserved brain systems or conditioning on relevant
covariates) should bolster the suitability of FFX analyses. This is
fortunate for practical reasons; the analytic FFX solution is quick,
benefits from an exact model evidence, and is more suitable for
exploratory (high-dimensional) analyses.

As we have demonstrated, pattern inferences can be used for
hypothesis-driven as well as exploratory analyses. In the former case,
the motivation for choosing a specific parcellation derives primarily
from the scientific question. The approach we have illustrated started
with building blocks, defined within an existing parcellation scheme
(i.e., AAL), and aggregating regions when desirable. Regions can be
grouped according to prior knowledge of the functional neuroanatomy.
For example, onemay askwhether bilateral frontal vs bilateral temporal
regions are more engaged in a task. Here, one would distinguish lobes
while pooling across hemispheres into a two-region partition (three if
considering the complement of the brain). Note that each partition
embodies a different (null and alternative) hypothesis. This means one
can address the sameSPMwith different hypotheses, framed in termsof
different partitions. We have tried to illustrate this anecdotally by using
different partitions above, when charactering language activations. One
can imagine step-down applications of this approach; where a cell from
a ‘significant’ partition is itself partitioned and the process repeated
recursively, until no further functional segregation can be inferred. We
will pursue this in elsewhere. In a hypothesis-driven approach,
partitions are informed by known functional neuroanatomy. Previous
research provides a priori, constraints on the inference: known
functional anatomy can be used to restrict the search to a small number
of regions. This empowers inference, because reducing the number of
regions reduces the implicit penalty imposed by the integrated
likelihood or multiplicity-controlled confidence intervals.

We emphasise that our inference about spatially structured
responses is no more than that (i.e., a test of departure from the null
hypothesis of uniform or non-segregated effects). The regional
specificity of this inference is determined by the nature of the partition.
The partition can have a small number of large regions (e.g., right vs. left
hemisphere); in which, case the inference will have little regional
specificity but good sensitivity to effects that are not conserved spatially
over subjects. Conversely, the partition can have a large number of small
cells, in which case the inference and post-hoc interpretation of the
pattern will be regionally specific. Sensitivity here depends on any
responses being expressed within the same cells. It is interesting to
think about the limiting case inwhich thepartition includes the set of all
voxels and how this relates to standard topological inference. In a
subsequent paper, we will look at optimising the partition with respect
to sensitivity and the implicit dependence on the spatial scale at which
activations are conserved over subjects.

Beyond the effects of the spatial prior, implicit in the partition, the
quantity of data available may also influence the choice of partition.
Information about regional parameters will increase with the number
of data-features, and hence with the number of subjects and size of
the regions. Additionally, as applied to peaks of an SPM, our proposed
scheme also depends on two pre-processing specifications, which
influence the number of data-features (events). First, the number of
events depends (inversely) on the degree of spatial smoothing. In this
respect, our method is most powerful with relatively low smoothing,
e.g. FWHM of 2–3 times the voxel size (cf the pattern classification
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approach in Hassabis et al., 2009). Second, these features depend on a
height threshold, which local peaks much transcend in order to
qualify as ‘events’. Attempts to finesse this dependence have been
made when inferring cluster-extent (Smith and Nichols, 2009). We
have resolved this by choosing a low threshold; in this work we use
t=3. This is roughly the lower bound required for valid set-level
inference (Friston et al., 1996). Recall that our proposed method uses
(supra-threshold) peak location but not height. For very low thresh-
olds, the fraction of events arising from the noise process alone will
increase. For very high thresholds, the absolute number of events will
become small. In either case, sensitivity will be compromised. Note
that chance excursions above a higher threshold will have one local
maxima per blob, so the position of the peak is a reasonable summary
of spatial location. At lower thresholds, there may be multiple local
maxima per blob (clustered closely in space). Here it is less clear how
to spatially index the excursion, and spatial independence may be less
tenable. In general one may resolve this by defining an ‘event’ as the
highest local peak in an excursion.

The assumption that fixed-effects models are more appropriate
than models that allow for random effects over subjects is clearly
questionable in many contexts. Generally, fixed-effect assumptions
will tighten the confidence intervals on the model's parameters,
boosting the significance of the results. This is important in the
current setting, because fixed-effects analyses are only tenable
when between-subject variations in the expression of responses fall
within — rather than between — regions of the partition. Future work
will develop tools which require much weaker assumptions; i.e., non-
parametric random effects — when this assumption is not tenable.
Such models may provide benchmarks for justifying simpler models
and enable formal model selection.

We have presented the simplest possible examples from a rich
class of spatial patterning methods, which seek to understand
patterns over pre-specified partitions of the brain. In future work
we will describe another parametric patterning method for inferring
the influence of subject-level covariates on spatial patterning. In a
second line, we will elaborate on flexible non-parametric models for
characterising patterned data.
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Appendix 1

Resel counts: A resel or ‘resolution element’ is a measure of
‘statistical’ volume that generalises the Lipschitz–Killing curvature
and is invariant under different spatial dependencies among the
component fields (Worsley and Taylor, 2007). Following Worsley et
al. (1999), we use the estimate

jAjj = ∫s∈Sj
RPVðsÞds ðA1:1Þ

(or the equivalent sum for discretised images; e.g., finite voxel lattice
approximations; see Kilner and Friston, 2010 for details). The scalar
image RPV:S→ℜ measures ‘resels per voxel’ and is based on the
covariance matrix of spatial derivatives estimated from the normal-
ised residuals of the GLM at each point s∈S. Eq. (A1.1) just says that
the effective volume in an SPM is not simply the number of voxels but
the number of resolution elements. For readers who are not familiar
with the formalism of SPM and random field theory, RPV can be
thought of as an image which encodes the spatial roughness of
underlying random terms. A voxel with a large number of resels per
voxel contributes more to the statistical volume because it has the
potential to emit more events. The RPV image is based on standard (if
deep) results from random field theory (see Taylor andWorsley, 2007
for a technical summary).

Two related estimators of RPV(s) are described in (Kiebel et al., 1999)
and (Flitney and Jenkinson, 2000). We use the former, as implemented
in the SPM software. This computation measures roughness in terms of
thevariance or dispersion of the spatial differences amongneighbouring
voxels. It is important that we have reasonably accurate estimates of
statistical volume |Aj|, to ensure the expected number of events under
the null hypothesis is estimated properly (i.e. as a benchmark against
which to assess experimentally-induced patterns). Strictly speaking, the
estimates are randombutwith sufficient degrees of freedom in theGLM,
they can be treated as known quantities.

Appendix 2

If we have a fixed bipartition A={A1,A2} and are told that there has
been one local maxima, N(A)=1, then p(N(A1)=1|N(A)=1)=a1.

Proof:

p N A1ð Þ = 1 jN Að Þ = 1ð Þ = p N A1ð Þ = 1;N Að Þ = 1ð Þ
N Að Þ = 1

=
p N A1ð Þ = 1;N A∩AC

1

� �
= 0

� �
N Að Þ = 1

=
λjA1je−λjA1 je−λ jA∩AC

1 j
λjAje−λA =

jA1j
jAj = a1

ðA2:1Þ

The corresponding result in the case of N(A)=k is binomial

p dj
� �

= Binomial dj; k; a1
� �

: ðA2:2Þ

A multinomial likelihood arises as a natural generalisation of the
above.

Appendix 3

For computational convenience, we work with the transformed
variables (cm)→α=cm: i.e. c=∑ jαj and mj = αj ∑jαj

� �−1. We
exploited prior-likelihood conjugacy to integrate the complete
likelihood with respect to θi — the multinomial parameters — leaving
a dependence of hyperparameters α on the data d.

pðd;αÞ = ∫
θ

∏I
i = 1p di jθið Þp θi jαð Þ

� �
dθ ðA3:1Þ

Rather than optimising α (i.e. ‘empirical’ Bayes), we defined placed
an independent ‘uninformative’ exponential prior on each component
of the vector α governed by a rate of 0.01 — exp(α|0.01) — and drew
samples from its posterior p(α|d). Specifically, we allowed a
Metropolis Hastings process on p(α|d)∝p(d|α)p(α) to reach equilib-
rium over one million iterations. Note that with enough subjects,
inferences do not depend on the particular choice of prior (Gelman
et al., 2004 p 547).

We then exploited the relation c = ∑jαj andmj = αj ∑jαj
� �−1to

acquire posterior samples of m(via deterministic transform of the
sampled α).

The Markov dynamics were governed by an independent Gamma-
distributed transition Kernel parameterised in terms of Gamma mean
and variance μ=a×b;σ2=a×b2 (where a, b are the Gamma shape
and scale parameters). Thus, the proposed location of the process at
each time-point in the algorithm's evolution was μ. The variance
parameter σ2 (central to the convergence properties of the process)
was adaptively updated during a burn-in epoch.
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