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Abstract

Background: Life-course epidemiology studies people’s health over long periods, treat-

ing repeated measures of their experiences (usually risk factors) as predictors or causes

of subsequent morbidity and mortality. Three hypotheses or models often guide the ana-

lyst in assessing these sequential risks: the accumulation model (all measurement occa-

sions are equally important for predicting the outcome), the critical period model (only

one occasion is important) and the sensitive periods model (a catch-all model for any

other pattern of temporal dependence).

Methods: We propose a Bayesian omnibus test of these three composite models, as well

as post hoc decompositions that identify their best respective sub-models. We test the

approach via simulations, before presenting an empirical example that relates five se-

quential measurements of body weight to an RNAseq measure of colorectal-cancer dis-

position.

Results: The approach correctly identifies the life-course model under which the data

were simulated. Our empirical cohort study indicated with >90% probability that colorec-

tal-cancer disposition reflected a sensitive process, with current weight being most im-

portant but prior body weight also playing a role.

Conclusions: The Bayesian methods we present allow precise inferences about the prob-

ability of life-course models given the data and are applicable in realistic scenarios in-

volving causal analysis and missing data.
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Introduction

Life-course epidemiology typically examines associations

between repeated measures of exposures and subsequent

health over many decades of life. This approach has proven

popular in the study of chronic forms of morbidity, which

often involve multiple exposures over different develop-

mental stages (hereafter ‘measurement occasions’) and an

appreciable latency period between exposure and out-

come.1 Research in this area is generally guided by three

life-course models or hypotheses:2 the accumulation

model, whereby multiple exposures of roughly equal im-

portance predict an outcome; the critical period model,

whereby one of multiple exposures (often very early in de-

velopment) is decisively important; and the sensitive period

model, whereby several exposures predict the outcome in

non-trivial ways. Even though these models greatly sim-

plify life-course processes that are likely very complex,

they have nonetheless proven influential and useful in the

study of health. Adjudicating among these models—as well

as several others that are relevant in certain cases3—is thus

a fundamental task in life-course epidemiology.

Two main approaches have been proposed in the litera-

ture: a structured approach4–6 and a Bayesian approach.7

The structured approach compares several nested models

to a saturated model. Goodness-of-fit criteria are then used

to ascertain the model that best fits the observed data. The

Bayesian approach readily accommodates previous knowl-

edge and arguably improves scientific interpretability,7–12

but is still in its infancy.

Madathil et al.7 proposed certain Bayesian procedures

for contrasting the critical, accumulation and sensitive

models given an observed data set. Their procedures are

based on a non-linear transformation of the linear parame-

ter h ¼ ðh1; ::; hTÞ in a generalized linear model of outcome

Y on the subject’s exposure history x ¼ ðx1; ::; xTÞ over T

periods. In particular, they estimate h ¼ dw where scalar d

captures ‘the total lifetime effect’ and w is a set of propor-

tions encoding the relative effect of each measurement oc-

casion. Madathil et al.7 then seek an alternative to

conventional model selection by studying distance distribu-

tions and credible sets of posterior pðwjyÞ. Some implicit

assumptions of this approach are outlined in the

Supplementary Material, available as Supplementary data

at IJE online.

In this paper, we introduce alternatives for summarizing

the posterior distribution pðwjyÞ of Madathil et al.7 and

many related life-course models. In particular, we compare

the critical, accumulation and sensitive models and sub-

models by their posterior probability, rather than using

complicated credible sets or the density of distances from

competing point hypotheses7 (see the base of Figure 1).

Our approach is designed for situations of relatively high

scientific uncertainty about which model is true. For exam-

ple, without knowing which specific period may be critical

in advance, we must examine all the critical models with-

out succumbing to a multiple-comparisons problem.

Unlike classical omnibus tests, e.g. F-tests or ANOVA,

however, we simply calculate the probability of three prede-

fined regions of parameter space. Each region uniquely char-

acterizes one model: it is the model’s ‘region of practical

equivalence’ (ROPE). In detail, our proposed composite test

involves first calculating the greatest difference between the

weights of any two periods, i.e. the range of component

parameters w ¼ ðw1; ::;wTÞ. This range characterizes the

three models: it equals 0 and 1 for the accumulation and crit-

ical models, respectively, and sits between these extremes for

any sensitive model. In other words, the (univariate) range

contains all the information required to construct polygonal

regions of practical equivalence (ROPEs) for the three broad

life-course models (see the base of Figure 1).

After assessing the composite models, post hoc decom-

positions provide more detail. The critical model can very

easily be decomposed by just examining the posterior com-

ponents of wi because exactly one will have high mass on

high values, say wi > 0:85. Crucially, we show that the

sensitive model also decomposes nicely via a simple univar-

iate construction, this time via ranking measurement occa-

sions 1; ::;T by importance, i.e. which are more ‘sensitive’

(have larger weights) than other time points. A simple algo-

rithm then yields a concise conclusion such as ‘with 90%

posterior credibility the first two measurement occasions

matter more than any subsequent occasions’. For reasons

discussed below, we call this latter quantity the ‘finest

credible rank’. The final accumulation model requires no

Key Messages

• Life-course epidemiological methods often test or compare models via points in parameter space.

• Instead, we propose using regions of practical equivalence for both model comparison and model decomposition.

• In particular, we describe the first general method for coherently decomposing the broad ‘sensitive model’ into

scientifically meaningful sub-models.
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decomposition: there is only one way for all weights to be

(approximately) equal.

Whereas our goal here is not to improve causal identifi-

cation per se, our proposed methods are general enough to

be broadly applied in causal and non-causal frameworks.

With or without causal identifiability, it is often important

to rank parameters or to conclude that they are unrankable

or tied (e.g. purely descriptive research). For simplicity, we

therefore demonstrate our methods via the simple model

that Madathil et al. (2018) introduced above (where strong

assumption of no feedback between time-varying treat-

ments and time-varying confounders would be required to

achieve causal identifiability). In the discussion, we explain

how our methods apply under weaker identifiability condi-

tions, non-linear models and models without a simplicial

parameter space.

The paper is structured as follows. We first describe the

mathematical rationale for our approach and then explain

the goals and specifications of our simulation study.

Having established the statistical validity of our approach,

we apply our methods to an empirical example relating

pronounced body weight over the life course to colorectal-

cancer disposition. The discussion then outlines the

strengths and limitations of our approach.

Methods

Rationale

Figure 1 provides an overview of our proposed methodo-

logical strategy. Assuming the model of Madathil et al.,7

our generalized linear parameter is taken to be h ¼ dw,

where w is a vector whose components are proportions

Figure 1 This graphic depicts our proposed method by considering the posterior distribution of a schematic three-life-period model (for ease of pre-

sentation) on D3. The diagram reads bottom to top. The schematic posterior probability iso-contours are depicted inside the simplex. Starting at the

base, we first evaluate posterior mass on the omnibus sensitive, critical and accumulation models using /. Specifically, we chose thresholds a¼0.15,

b ¼ 1- a for the univariate range, which together imply the polygonal regions of practical equivalence (ROPEs) in the simplex at the base of the figure.

(The red central region corresponds to the interval [0, a] ¼ [0, 0.15], the blue corner regions correspond to the interval [b, 0] ¼ [0.85, 1] and the non-

shaded, intermediate region corresponds to the interval (a, b) ¼ (0.15, 0.85). See Supplementary Material, available as Supplementary data at IJE on-

line, for a higher-resolution image and critique.) Our schematic posterior mass does not lie in the center or in a corner, but is consistent with the inter-

mediary sensitive model, motivating us to ask ‘which specific sensitive sub-model?’ We answer this question by advancing up the diagram (choosing

the most probable event at the next level up). Note that upward paths correspond to the subset inclusion relation �, so posterior probability mono-

tonically increases accordingly: see Figure 2 for a numerical example. We stop at the first region with probability >90% and call this region the 90%

finest credible region. In our schematic example, this is 2,3j1. This ranking procedure would have been inconclusive if (and only if) the first such re-

gion is the vacuous ranking at the top of the diagram. Now suppose that, from the base of the diagram, our posterior had instead supported the criti-

cal model. Then, our follow-up decomposition could identify which critical period by simply examining pðwi > t jyÞ for some high threshold t . Finally,

had we chosen the accumulation model at the base of the diagram, no further decomposition would have been required.
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satisfying wt � 0;
P

t wt ¼ 1. Thus, w belongs to the

T-part simplex, which we denote as DT . Components of

w ¼ ðw1; ::;wTÞ usefully capture the relative importance of

exposure x at each measurement occasion t ¼ 1; ::;T for

predicting outcome Y. Conversely, d captures ‘the total

lifetime effect’.

We define our composite test by choosing two thresholds

a; b 2 ½0; 1� to partition the values of / into three intervals,

which are practically equivalent to the accumulation ¼ ½0; a�,
sensitive ¼ ða;bÞ and critical ¼ ½b; 1� models. These intervals

encode competing (non-overlapping) models that are exhaus-

tive: pðsensitive or accumulation or criticaljyÞ ¼ 1. We ap-

proximate the posterior probability of these three life-course

models by the fraction of posterior Markov Chain Monte

Carlo (MCMC) samples falling within the accumulation, criti-

cal and sensitive intervals, respectively. We then conclude

which model is most credible. For example, the sensitive

model may be deemed credible in absolute terms if >90% of

the posterior samples of /jy fall within the sensitive interval.

Or it may be deemed most credible in relative terms if the esti-

mated Bayes factor

exceeds some threshold.

The ROPEs (a, b) and [b, 1] above encode ‘composite

models’. The posterior mass on [b, 1] assesses the global

critical model, i.e. is any of T critical periods plausible?

Whenever this model is plausible, it is trivial to assess

which component is critical: simply inspect the individual

components of w because exactly one will markedly devi-

ate from zero. Similarly, the sensitive model (a, b) encom-

passes all possible full rankings. Decomposing this latter is

more tricky and leads us to now define the concept of ‘fin-

est credible rank’.

Let the function f label each point w with its full rank-

ing. For example, f gives the point w ¼ ð0:2;0:7;0:1Þ the

label 3j1j2 because the third measurement occasion is

the least important, followed by the first occasion, with the

second occasion being the most important. This notation

for labelling full rankings is adapted from that of Lebanon

and Mao.13 The full set of T! full rankings comprise mutu-

ally exclusive sub-models of the sensitive model. We again

approximate the posterior probability of these full rank-

ings by the fraction of MCMC samples satisfying the rele-

vant inequalities (w3 < w1 < w2 in this example). Thus,

we can assess whether the most probable full ranking of

measurement occasions by importance is e.g. 3j1j2 or

whether pð03j1j20jyÞ � 0:90. This assessment provides

insights into our multivariate posterior pðwjyÞ without the

inconvenience of constructing complicated continuous

multivariate credible sets.

Importantly, the notation extends to coarser, partial

rankings, such as 3;1j2, and calculates their posterior

probability. A partial ranking can be viewed as a collection

of full rankings: this ambiguity means that they carry less

information about the relative importance of measurement

occasions. For example, the partial ranking 3;1j2 (equiva-

lently denoted as 1;3j2) represents all points w that can be

ranked as either w3 < w1 < w2 or w1 < w3 < w2: it,

therefore, encodes points w for which w2 is unambiguously

the most important period. Then, if pð01; 3j20jyÞ � 0:90,

we can say with 90% credibility that the second measure-

ment occasion is most important, even though we can say

nothing about the relative importance of the first and third

occasions. The proposed algorithm starts at the maximum

full ranking a posteriori, then recursively seeks the maxi-

mum a posteriori ranking at the next level of resolution

(among all partial rankings with one additional bar ‘j’ ex-

changed for a ‘;’). This is depicted in Figure 1 and gives the

optimal nested sequence of sub-models of the sensitive

model. We define the b% ‘finest credible rank’ (FCR),

denoted as Cb, as the first (finest, or most informative) such

partial ranking with b% posterior probability. This is the

most informative statement that can confidently be made

about the relative sensitivities of different measurement

occasions.

Figure 2 illustrates this recursive scheme for whittling

down the sensitive model using a hypothetical numerical

example. It illustrates inference from data where we know

the true full ranking was 1j2j3j4j5j6j7. The figure gives the

‘cumulative density function’ of the best nested sequence of

subsets of DT . Among these, C90% is the finest 90% credi-

ble ranking (represented by the fourth point from the left

in Figure 1). The candidate partial ranking at each step in

the sequence from left to right is the most credible (maxi-

mum probability) coarsening of the preceding candidate.

In this example, the partial ranking 1,2j3,4j5,6j7 is the fin-

est ranking with 90% credibility. That is, 1,2j3,4j5,6j7 is

the 90% FCR: we conclude that seventh measurement oc-

casion has the greatest weight, the fifth and sixth occasions

(whose relative importance cannot be differentiated) make

BFsensitive ¼
pðsensitivejyÞ=pðsensitiveÞ

pðcritical or acculumulationjyÞ=pðcritical or accumulationÞ
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the next largest contribution to explaining the outcome

variation, followed by the third and fourth occasions

(again indistinguishable in terms of importance) and finally

the first and second occasions. Thus, in this hypothetical

example, we can be confident of a coarse pattern of in-

creasing sensitivity of outcome to exposures later in life.

However, we are not entirely confident that sensitivity is

fully monotonically ordered: this conclusion warrants only

�70% credibility as given by the probability of the left-

most entry on the x-axis, the full ranking 1j2j3j4j5j6j7.

As our discussion of Figure 2 illustrates, we require high

posterior precision to faithfully identify the true full under-

lying ranking, such that our 90% FCR is a full ranking.

When posterior uncertainty is higher, we can only partially

infer the parameter ranking, i.e. the 90% finest credible in-

terval will be a partial ranking (possibly even the trivial

ranking). This can also be pictured by contracting or

expanding the isocontours in our schematic posterior den-

sity in Figure 1.

A detailed discussion of alternative priors on / and f is

presented in the Supplementary Material, available as

Supplementary data at IJE online.

Goals of the simulation

We ask whether the univariate credible interval for djy ap-

propriately excluded zero, i.e. whether it correctly inferred

whether any time period is relevant for the outcome. If the

answer is positive, it makes sense to broadly examine the

three competing models (critical, accumulation and sensi-

tive) via the posterior distribution /jy. If /jy additionally

supports a sensitive model, f jy and the probable ordering

of weights should be examined. Therefore, the objectives

of the simulation study were (i) to assess whether djy

appropriately excluded zero and, if so, (ii) to assess

whether the range /jy successfully discriminates between

the accumulation, critical and sensitive models, and, in the

case of the last possibility, (iii) to assess whether rank f jy
succeeds in identifying the correct ranking of time periods

by their sensitivity, as discussed next.

Knowing the simulated ground truth w� and its corre-

sponding true full ranking f ðw�Þ, our principle questions

concern its relation to the inferred finest b% credible rank-

ing, which we denote as Cb:

i. Is the FCR Cb consistent with the true full ranking? We

say it is inconsistent if there is any i 6¼ j for which the

FCR asserts wi < wj whereas, in fact, wj < wi in the

simulated ground truth. Otherwise, we say it is

consistent.

ii. How much ‘information’ does Cb retain? Here, we use

q ¼ r=r� with values between 0 and 1 to measure the

quality of information in Cb, where r is the number of

distinctions (inequalities or bars ‘j’) in Cb and r� is the

true number in f ðw�Þ. Therefore, a larger q means a

more informative inference.

The first question expresses the minimal requirement

that Cb does not contradict the truth. The second question

is motivated by the desire for Cb to be as informative as

possible. Ideally, it should faithfully retain all distinctions

made in the true ranking f ðw�Þ.

Simulation parameters

Our simulation fully reproduced and extended that of

Madathil et al..7 Namely, we simulated a three-period

life-course study, assuming no measurement error in the

variables. In particular, for participant i, we sampled

Figure 2 Posterior cumulative density over increasingly coarse partial rankings. The ground truth in this example was 1j2j3j4j5j6j7. Progressing from

left to right across the x-axis, rankings become coarser by the loss of one distinction (‘j’). All points above the horizontal black line have �90% poste-

rior credibility.
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three Gaussian exposure variables xi ¼ ðx1;x2;x3Þ with a

correlation of 0.7 and 0.49 between adjacent and non-

adjacent measures, respectively. Data sets were simulated

for all combinations of the four life-course models (the

two distinct sensitive models defined below, in addition

to the accumulation and critical model) and three sample

sizes (n ¼ 700; 1500; 3000). The ground-truth weight

values of the simulation, denoted with an asterisk ‘�’,
were as follows: (i) pure accumulation model w�i ¼

1
3 ;

1
3 ;

1
3

� �
; (ii) linear sensitive period model with weights

w�ii ¼ 1
1þ2þ3 1;2;3Þð ; (iii) first and second measurement

occasions as a sensitive period w�iii ¼ ð0:75;0:2;0:05Þ;
(iv) third measurement occasion as a critical period

w�iv ¼ ð0;0;1Þ.
We then extended the above three-period simulation to

five and seven periods as follows: the accumulation model

(i) above was generally w�i ¼ 1
T ; ::;

1
T

� �
; (ii) was generalized

in the obvious way to w�ii ¼ 1PT
i¼1

t

1; 2; ::;TÞð ; and (iii) and

(iv) were padded with zeros, e.g. w�iii ¼ ð0:75;0:2;

0:05;0;0; 0;0Þ and w�iv ¼ ð0;0; 0;0;0; 0;1Þ, respectively, in

seven dimensions.

We independently varied the lifetime effect d� between

0, 1 and 2. The values simulate situations where a unit

change in the total exposure (or weighted average expo-

sure) over all time points increases the outcome by 0, 1 or

2 units. These fixed underlying settings (estimands) are

again denoted as ‘�’, to distinguish them from their poste-

rior inferred counterparts. Given d� and w�, we then gener-

ated yi ¼ d�
PT
j¼1

xijw
�
j þ �i with independent �i � Nð0; 1Þ,

for i ¼ 1; ::; n.

The prior distribution and inference

In accordance with the data-generating model above, we

used Bayesian linear regression for inference. For the mo-

ment, we follow Madathil et al.7 in their choice of a uni-

form prior over all DT , i.e. a non-informative Dirichlet

prior for weights pðwÞ ¼ Dirichletðwj1Þ, where 1 is a vec-

tor of T ones. In cases in which there is plausible justifica-

tion for bias towards the accumulation or critical models,

the hyperparameter can be generalized to a1, with a > 0.

Then, it is well known from the properties of the Dirichlet

that choosing a < 1 implies a prior bias toward the critical

model and a > 1 implies a prior bias towards accumula-

tion. We revisit these options below. We also chose a

weakly informative Cauchy prior for the lifetime effect

pðdÞ ¼ Cauchyðdj0;2:5Þ.

To summarize, the model was

yi ¼ d
XT

j¼1

xijwj þ �i

�i�i:i:d normal 0;rð Þ
d � Cauchy 0; 2:5ð Þ

w � Dir
1

D
; . . . ;

1

D

� �
� uniform DTð Þ

r � lognormalð1; 1Þ

The Hamiltonian MCMC sampler implemented in

Stan14 was used to acquire 50k marginal posterior samples

of djy and wjy. After performing standard convergence

tests, we examined djy and derived /jy and f jy by applying

/; f to each point in our posterior sample wjy.

Results of simulation

Posterior lifetime effect d and range /

In every simulation, the univariate credible interval for djy
appropriately included/excluded zero. This pattern sug-

gests that djy is a faithful omnibus measure of lifetime

effect. In simulations with evidence of non-zero djy, we

used /jy to adjudicate between the critical, accumulation

and sensitive models.

By choosing two thresholds a ¼ 0:15 and b ¼ 1� a in

the support of /jy, we constructed three intervals ‘practi-

cally equivalent’ to the accumulation, critical period and

sensitive models, as discussed in the ‘Rationale’ section.

Table 1 reports the resulting confusion matrix, which

relates the inferred models (column variable) to the under-

lying truth (row variable). We made a conclusive choice

between these cases whenever one of them had >0.9

Table 1 Confusion matrix for true and inferred life-course

models

a s c u

i. a 14 0 0 4

ii. s 0 18 0 0

iii. s 0 17 0 1

iv. c 0 0 14 4

Rows refer to the true models: i. accumulation; ii. linear sensitivity; iii.

non-linear sensitivity; and iv. critical period. Columns refer to the inferred

models: accumulation (a), sensitive (s) and critical (c) hypotheses, as well as

simulations with evidence of a non-zero lifetime effect and inconclusive/

unknown (u).
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posterior probability. Otherwise, our inference was consid-

ered inconclusive/unknown (u). There were 9/72 inconclu-

sive inferences. Inconclusive inferences reflect posterior

uncertainty, which, in turn, reflects either small effects or

sample sizes.

However, all the conclusive results in our simulation

study correctly identify the ground truth. In general, there

were no incorrect inferences in our study, such as would

arise if, for instance, we concluded that the accumulation

model was true when in fact data were generated under the

sensitive model. For example, of the 18 simulations in

which the accumulation model was true (Table 1, row 1),

inference was correct in 14 cases and inconclusive in 4

cases. This table shows that �90% (63=72) of inferences

were both conclusive and correct.

The results of Table 1 were qualitatively similar when

we instead set ða;bÞ ¼ ð0:1;0:9Þ or ða;bÞ ¼ ð0:2; 0:8Þ. In

complementary analyses, we also used a conventional 3.2

threshold for the (log) Bayes factors discussed in

‘Rationale’ above (estimated by the ratio of prior to poste-

rior samples in each ROPE). Results were again qualita-

tively similar, albeit with slightly inferior performance:

there were still no misclassifications, but more inconclusive

results (more false-negative Bayes factors below the thresh-

old of 3.2).

Posterior FCR Cb
When the sensitive model was credible (i.e. the 18þ 17

cases in column s of Table 1), it made sense to ask which

periods were more or less sensitive. For these cases, we cal-

culated the finest partial ranking Cb of parameters.

Regarding the goals of the simulation, we found that

i. the inferred finest partial ranking Cb never violated the

ground truth; and

ii. on average, over all simulations, �0.71% of the dis-

tinctions were preserved. Table 2 shows that q, the pro-

portion of distinctions preserved in Cb, increased with

the simulated sample size. On average, over simulations

with the lowest sample of 700, 52% of the distinctions

were preserved. This increased to 72% and 89% with

higher sample sizes. This pattern shows how increased

posterior precision in wjy translates into increased pre-

cision of the inferred rank.

Empirical example

Data and regression model

The data are from the National Longitudinal Study of

Adolescent to Adult Health (Add Health), a representative

study of US adolescents in Grades 7–12 during 1994–1995

who were followed into adulthood over five waves of data

collection.15 Specifically, the present study combines body-

weight data from (i) parental report of birthweight, (ii)

Waves I and II (12–20 years), (iii) Wave III (18–27 years),

(iv) Wave IV (25–33 years) and (v) Wave V, Sample 1

(33–42 years).

During Wave V, RNAseq abundance data from periph-

eral blood samples were collected (currently, n¼ 1132

samples collected in the 2016–2017 window have been

fully preprocessed; details of data collection and prepro-

cessing can be found in the Supplementary Material, avail-

able as Supplementary data at IJE online). Our outcome

variable was a scalar mRNA colorectal-cancer signature

constructed as the normalized, weighted mean of 127 upre-

gulated genes (given positive weights) and 2 downregu-

lated genes (given negative weights). These genes are

collectively implicated in colorectal-cancer biology.16

Normalization was performed using a reference-gene nor-

malization procedure17 that converts raw counts onto a

log scale. We had both mRNA and phenotype data for 893

participants. For participant i, we denote the ‘pronounced

body weight’ dummies on the five measurement occasions

xi ¼ ðx1; x2; x3;x4;x5Þ0 and their real-valued mRNA score

yi. Our models controlled for biological sex, race/ethnicity,

age at the time of the survey during Wave I, preterm birth

status, region and sample-specific quality-control measures

for mRNA. For notational simplicity, these control varia-

bles are denoted by the vector c in the equations below.

The goal was to predict a pre-symptomatic mRNA

colorectal-cancer signature from five measurements of

pronounced body weight, taken on five separate measure-

ment occasions: pronounced birthweight (defined as a

birthweight >8.8 pounds or <5.5 pounds) and then pro-

nounced body weight [body mass index (BMI) � 30] at

Waves I–V. We wanted to know whether one measurement

occasion was critical for predicting variation in this cancer

signature, whether all occasions mattered equally (accumu-

lation) or whether multiple occasions mattered to different

degrees (sensitive). In the last case, we sought a credible

Table 2 Simulated sample sizes and mean proportions q of

distinctions preserved by the posterior credible ranking

N q

700 0.52

1500 0.72

3000 0.89

The quantity q refers to the proportion of distinctions in the ordering of

the true underlying parameter which are preserved in the inferred ordering or

FCR.
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and informative statement about the relative importance of

the measurement occasions.

A Bayesian MCMC approach was used to estimate the

reparameterized regression model of Madathil et al.7 as

yi ¼ aþ d
P5
i¼1

wixi þ c0cþ �i. Here, a is an intercept, d and

w ¼ ðw1; ::;w5Þ are as defined throughout this work and c

is the regression parameter vector for our control variables.

The priors were the same as for the simulations above,

with the addition that ci � Cauchyð0; 2:5Þ independently

for each control variable. Thus, assuming a uniform prior

distribution on w and weakly informative normal prior

distributions on d and c, MCMC was used to collect 50k

samples from their posterior distributions using the R

package RStan, as implemented by Guo et al.18 In particu-

lar, we pooled post-burn in samples from five independent

chains of 10k after performing standard diagnostics to en-

sure convergence (we ran five independent parallel

Hamiltonian Monte Carlo chains, each with 20k itera-

tions, and convergence was confirmed by checking trace

plots and Rhat values).

Results

The posterior mean weight vector was w ¼ (0.174, 0.104,

0.055, 0.077, 0.590). The posterior mean d was 0.14 with

95% credible interval (0.09, 0.19). The central 90% and

95% posterior intervals for the lifetime effect d were [0.1,

0.18] and [0.09, 0.19], respectively. These exclude zero, so

we proceeded to evaluate the suitability of the accumula-

tion, critical and sensitive models. We did this by choosing

two thresholds a ¼ 0:15; b ¼ 0:85 to partition the posterior

/jy into three intervals (recalling that / is defined as the dif-

ference between the largest and smallest components of w).

The posterior probabilities for the accumulation, sensi-

tive and critical models were 0.0004, 0.9973 and 0.0023,

respectively. The sensitive model was thus the most credi-

ble, warranting an examination of the relative importance

of the measurement occasions by examining the probable

ranking of the weights. Table 3 presents the highest-proba-

bility partial rankings at each level of granularity. The

most probable full ranking was 3j4j2j1j5. However, this

highly informative statement carried only 19.7% posterior

credibility. In fact, the 90% finest credible ranking, with

94.1% credibility, was 3; 4;2;1j5, which can equally be

written as 1;2;3; 4j5 in our notation (because, in our nota-

tion, the order of numbers between any two adjacent bars

is arbitrary). Thus, the final (fifth) measurement occasion

matters more than any other (birth or Waves I–IV) in pre-

dicting the outcome. We have already concluded that

(some of) these earlier periods probably matter: the

posterior probability that they all have a weight of zero

(i.e. the probability of a critical pattern of weights) is only

0.0023. Yet, our inferential uncertainty in this data set is

too high to warrant any further claims about the relative

importance of these earlier measurement occasions. It

should also be noted that, with 74% credibility, Wave I

matters more for colorectal disposition than Waves II–IV,

but less than Wave V.

Discussion

Our approach builds on Madathil et al.’s7 proposal to use

a Bayesian framework to evaluate different models of life-

course epidemiology. Like those authors, we pursue a

detailed posterior analysis of a single model under weakly

informative priors. We propose Bayesian composite tests

and decomposition procedures based on the posterior prob-

ability of the critical, accumulation and sensitive models

and sub-models. Importantly, our approach relaxes

dependence on continuous multivariate confidence sets, dis-

tance densities and the requirement to specify point hypoth-

eses (‘expected weight vectors’).7 Instead, each model is

identified with a region or ‘ROPE’ of parameter space DT ,

and we simply evaluate the posterior probability of that re-

gion. Our two-fold approach therefore simplifies the com-

parison of common models of life-course epidemiology.

Our simulations illustrated that our methods were not

capricious: adjudicating between the composite life-course

models never pointed to the wrong model and model de-

composition rarely confused the relative importance of

measurement occasions. Therefore, we studied an empiri-

cal data example examining associations between an

mRNA-based cancer signature and body-weight history us-

ing Add Health cohort data. Our empirical example was

motivated by the fact that high BMI is associated with a

high risk of colorectal cancer,19,20 which is among the

most common cancers and a leading cause of cancer

death.21 However, the role of BMI at different points in

the life course has not been examined. Our method con-

cluded that the critical and accumulation models do not

Table 3 Ranking measurement occasions by their importance

for colorectal cancer (i.e. their relative magnitude)

Ranking Probability

3j4j2j1j5 0.197

3j4,2j1j5 0.350

3,4,2j1j5 0.737

3,4,2,1j5 0.941

3,4,2,1,5 1.000

The best sequence of nested sub-models (partial rankings) of the sensitive

model and their posterior probability.
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offer a compelling explanation for the data. Instead, a sen-

sitive pattern emerged in which contemporary pronounced

body-weight status was most salient to the abundance lev-

els of mRNA for genes associated with colorectal cancer

and pronounced body weight at earlier ages (and possibly

high/low birthweight status) was also independently pre-

dictive. Such findings, combined with prior studies,22 sup-

port the need for further study with larger samples that

include data on life-course patterns of body mass.

Our proposed methodological approach may be partic-

ularly attractive in situations of high prior uncertainty

about the true relative importance of different measure-

ment occasions, which is often the case in life-course epide-

miology. Assuming that the sensitive model (or critical

model) is true, there may be no compelling reason to hy-

pothesize one particular pattern of temporal sensitivity to

exposure over another. In such cases, it often makes sense

to place a uniform distribution over parameter space DT

and, therefore, over different patterns of sensitivity or criti-

cality. Our sensitive decomposition relies on the (compo-

nent-wise) order of the parameters. A precursor of this idea

appears in Table 2 of Madathil et al.,23 albeit on an ad hoc

subset of sensitive models (see also Madathil et al.24). Our

work formalizes this idea into an algorithm that explicitly

optimizes over the set of all possible decompositions (rank-

ings), while controlling multiple comparisons. We have

achieved this by rigorously defining and assessing the er-

ror, and information content, of an inferred decomposition

(see ‘Goals of the simulation’). The result is a method that

complements other common summaries of the posterior

distribution (e.g. mean and median).

Our methods have some limitations. First, our approach

is unsuitable when exposures are measured at many,

closely spaced time points.25 However, alternatives are

suggested by Madathil et al.7 Second, the posterior preci-

sion of our methods requires relatively large sample sizes

(as discussed in the ‘Results’ section) and, therefore, may

be best suited to large epidemiological panels. Third, our

simple expository model is too restrictive for many appli-

cations. For example, it is essentially linear in the parame-

ters and assumes without justification that all coefficients

have the same sign. Neither can its parameters benefit

from a causal interpretation except under quite strong

assumptions.26,27 Fourth, assuming that we are happy with

the broad geometry of our ROPEs (see Supplementary

Material, available as Supplementary data at IJE online,

for a critique and discussion), there remains the question of

how to set threshold values a; b to define our composite

tests. In what follows, we discuss and seek to resolve these

last two concerns.

Despite the attractive parameterization that we have

adopted from Madathil et al.,7 their model is not explicitly

causal or longitudinal: it has the same limitations and ex-

planatory power as a generalized linear model on the re-

stricted parameter space R
T
7 ¼ 6ð0;1ÞT � R

T . In this

restricted space R
T
7, all components of any parameter vec-

tor must have the same sign (i.e. each measurement occa-

sion affects the outcome in the same direction). For

example, in the 2D case R
2
7, this region is simply the union

of the positive and negative quadrants. But we can easily

promote this untested assumption to an explicit model,

with posterior probability given by pðRT
7jyÞ under a stan-

dard, unrestricted or ‘encompassing’ Bayesian generalized

linear model with parameters anywhere in R
T . Namely,

with a lower computational cost, we can simply estimate

an unrestricted Bayesian generalized linear model and as-

sess the proportion of posterior samples in R
T
7.

Moreover, we can also evaluate the two halves of this

union separately: so pðRT
þjyÞ, for example, examines the

more specific claim that all components are positive, i.e.

d > 0 in the parameterization of Madathil et al.7 Given

posterior evidence for one quadrant (e.g. R
T
þ), a simple

transformation hi 7! hi=
PT
i¼1

hi from this quadrant takes us

back to the simplex DD, where all our proposed methods

again apply. This observation indicates that our proposed

methods apply in any model with a parameter vector, not

the model of Madathil et al.7 In fact, our procedure for

identifying the FCR does not itself require the transforma-

tion hi 7! hi=
PT
i¼1

hi and can be applied directly to the encom-

passing vector space R
T . Similarly, / ¼ 0 characterizes the

equality or accumulation model in both R
T or DT , depend-

ing on which is most convenient. The accumulation model

can therefore always be assessed by measuring the poste-

rior mass of /jy within a ROPE around zero.

In summary, our methods apply generically in the sense

of not requiring many modelling assumptions, such as pa-

rameter linearity, error independence (e.g. temporal corre-

lations) or strong causal identification conditions. They

consequently apply to lists of real-valued parameters in

one’s favourite epidemiological model, to variance compo-

nents of a multilevel model, etc. For example, the paramet-

ric g-formula is amenable to a Bayesian approach, e.g. Keil

et al.28 Furthermore, our methods can be combined with

any procedure that addresses missing data, so long as this

procedure returns a well-defined posterior distribution.

For example, one may mix draws from the posterior distri-

butions of each multiply-imputed (complete) data set (e.g.

Zhou and Reiter29).

We now consider how to set threshold values a;b. This

specification is important partly because it affects the prior

probability of our three composite models. One might
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adjust for this prior influence via relative measures such as

pðsensitivejyÞ=pðsensitiveÞ or the Bayes factors discussed in

our ‘Rationale’. But these statistical solutions do not free

us from considering the scientific meaning of our models.

The generic—and unhelpful—guidance is to ensure that

the model ROPEs capture the scientific meaning of ‘practi-

cal equivalence’ in one’s particular application. Recall that

/ is the size of the interval containing all components of

the underlying parameter w.

Recall also that the accumulation model means all

these components cluster in a ‘small’ interval around
1
T ; . . . ; 1

T

� �
. We are therefore required to set threshold a as

‘small’ enough to match the scientifically appropriate no-

tion of ‘small’. Similarly, / is highest when one period

dominates all the others. Hence, we must set b as ‘large

enough’ so that one period must dominate the rest in a sci-

entifically ‘critical’ fashion. In other words, we cannot

avoid assigning precise values to the otherwise descriptive

terms ‘critical’, ‘accumulation’ and ‘sensitive’, although

such values can themselves be subject to sensitivity

analyses.

Furthermore, we discourage generically specifying a;b

to ensure a uniform distribution over the three competing

ROPEs: this speciously puts the three models on an equal

footing but poorly operationalizes the life-course models.

In situations of very high scientific uncertainty, one palat-

able generic specification is ða;bÞ ¼ ð0;1Þ, i.e. we accept

the sensitive model without question. This is appropriate

when we are truly ignorant about the parameters: without

auxiliary ROPEs, a uniform distribution on weights

implies that we believe the sensitive model. This is because

DT overwhelmingly comprises vectors whose components

can be fully ranked and collectively these ‘sensitive’ vectors

have prior probability 1. The posterior sensitive ROPE in

this setting is itself meaningless: it vacuously has posterior

probability 1 because it was given prior probability 1. Any

interesting inference then hangs on whether the FCR is or

is not itself the vacuous rank 1;2; :;T. In this situation, we

therefore simply proceed to independently identify the

FCR. Our simulations take an intermediary position. Our

particular choice of ða;bÞ ¼ ð0:15;0:85Þ for this paper

somewhat boosts the critical and accumulation models

while preserving the natural advantage of the sensitive

model. As a consequence, we placed a higher bar on poste-

rior support for the accumulation and critical models.

Conversely, because of our prior bias for the composite

sensitive model, it should be accompanied by its (unbiased)

FCR-model decomposition.

Despite these limitations, our proposed framework

allows researchers to test central models of life-course epi-

demiology. We presented straightforward extensions to ad-

dress some often-encountered complications in life-course

modelling: e.g. causal modelling, missing data and situa-

tions involving autocorrelated errors (or nested data). The

framework requires decisions to quantify the ROPEs (a; b)

and also criteria by which to draw substantive conclusions

from the probabilities of the rankings (Figure 2)—specifi-

cations that will put tests of life-course models on firmer

scientific ground.
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