
Running head: INSERT SHORTTITLE COMMAND IN PREAMBLE 1

A Bayesian take on the family-wise error rate

Justin Chumbley1,2 & Klaas Stephan2

Affiliation

Author Note

Correspondence concerning this article should be addressed to Justin Chumbley,

Jacobs Center for Productive Youth Development, Andreasstrasse 15, CH-8050 Zurich.

E-mail: justin.chumbley@pm.me

mailto:justin.chumbley@pm.me


INSERT SHORTTITLE COMMAND IN PREAMBLE 2

Abstract

Newcomers to neuroimaging quickly face a choice between frequentist and Bayesian

statistical parametric mapping. Having been told that frequentist methods are only as good

as their control over the all-important spatial multiple comparisons problem, they typically

worry if and how Bayesians solve this central problem too. The answer may appear

frustratingly indirect, being grounded in a different philosophy and expressed in different

terms: shrinkage, hierarchical regularization, adaptive smoothing, etc. Our short tutorial

soothes this concern by explaining in simple terms how Bayesian methods understand and

control a quintissentially frequentist notion of multiple comparisons, the gold-standard

family-wise error rate (FWER). To do this we define a Bayesian counterpart to this

family-wise error probability, and show that it is small in the absence of real experimental

effects in the brain. We explain how Bayesian tools achieve control by different means:

adapting parameter estimation rather than the test threshold. The work here aims to

complement other work connecting frequentist and Bayesian notions of FDR control.
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A Bayesian take on the family-wise error rate

In the context of statistical tests, frequentist error probabilities reflect a simple

thought experiment: if I were to repeat this test an infinite number of times under the

same conditions what fraction of them would give the wrong answer. This classical test

theory emphasizes that false positive error probability increases with the number of tests.

In it’s simplest form, this so-called “multiple testing problem” can be explained by analogy.

Let a 20-sided black die with just one red face represent a classical test: there is a 0.05

percent of (red) error. If you throw a bucket of dice, the chance of one or more red faces -

the so-called family-wise error rate - is much higher: it soon approaches 1. We then say a

type-I error has occured in the “family” of die. For a more realistic example take a simple

linear model, say ANOVA with a single, univariate outcome and one experimental factor

taking n levels: it is then possible to do n tests of the levels themselves,
(
n
2

)
pairwise

comparisons etc. There are clearly many die.

This problem is so basic to statistics that many solutions have been proposed. One

might bypass multiple comparisons by conducting a single “omnibus” test, a standard

F-test in this example. Alternatively, one might choose to increase the threshold of the

multiple constituent tests, using say Bonferonni or Benjamini-Hochberg adjustments,

making positive test results less common. This effectively increases the number of sides per

dice while keeping just one bad (red) face. An alternative solution is to reduce error in the

parameter estimation itself, rather than in the test. This traditionally comes under the

rubric of “bias-variance tradeoff”, because error reduction entails reducing random

variability by “biasing” parameter estimation somehow - typically shrinking parameters

toward one another or toward zero. This corresponds to using some magic or other to

ensure that the dice do not fall independently, but are coupled. In the extreme that this

“bias” is very strong - you insist that all die land on the same side - you are really just

performing a single test and the multiplicity problem is gone.
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Another interesting solution, which seems to have emerged from neuroimaging, is

based on the frequency distribution of the largest test statistic across all parameters. The

gold standard frequentist correction for multiple, spatially-correlated tests in neuroimaging

is based on this frequency distribution of the maximal test statistic over all voxels in the

brain image (Friston et al., 1994)1. This maxima fully characterizes the FWER, here the

chance of declaring 1 or more false positive voxels in the whole image, because it exceeds

test threshold h > 0 exactly when 1 or more voxels exceed threshold. By choosing h, the

test threshold common to all voxels, high enough to ensure that the maximal voxel only

exceeds h with say 0.05 probability, we control FWER to 0.05. Intuitively, if I repeated

this experiment an infinite number of times under the same conditions how much would my

global maxima - and therefore my “family-wise error” - vary? As we discuss next, we

believe that this focus on stochastic maxima offers one bridge for Bayesians to understand

frequentist FWER on their own terms.

A typical Bayesian interprets probability very differently: it quantifies their belief

about effects in the single observed data-set. The credibility, not the frequency, of a

meaningful positive effect at any given voxel is quantified by the posterior mass exceeding

fixed threshold h > 0. The crucial thing we emphasize in this tutorial is this: posterior

belief about multiple parameters is inherently multivariate but we can derive any scalar

consequence of this belief by simple application of the laws of probability. In particular, we

can derive our posterior belief about the largest effect in the brain2. Ironically, this is best

understood by a sampling analogy. Say we draw 1000 samples from our multivariate

posterior probability map. Each realized sample is then just a spatial array or map of

numbers, and we can record it’s maximal value: the height of it’s highest peak. Repeat this

procedure for the 1000 samples and build a 1d histogram of these values. This histogram

1Assuming zero experimental effect anywhere in the brain, this maxima distribution can be approximated

using ideas from random field theory.
2or in a parameter vector, matrix, etc.
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approximates our uncertainty about the largest effect in the map: the credible size of the

peak effect in the brain. Furthermore, our posterior subjective belief that there is any

non-neglible, positive effect in the brain is exactly the fraction of this histogram exceeding

h. Note that, assuming there are actually zero effects in the data generating process -

i.e. assuming an omnibus null hypothesis of no effect anywhere in the brain - this latter is

interpretable as a Bayesian counterpart to the frequentist FWER. It amounts to false belief

in some positive effect, when all effects actually equal zero by definition. Having translated

FWER into Bayesian terms, the next question is whether and how Bayesian inference

controls this “error”.

Here we focus on the hierarchical Bayesian approach, which partly evolved from the

idea of a “bias-variance” tradeoff introduced above. Briefly, the approach is to jointly infer

our multiple parameters and their relationship to one another. If the latter suggests they

share a similar value, posterior belief gravitates or “shrinks” towards that common value.

The many technicalities are readily available in any Bayesian textbook or paper. It suffices

for us that, assuming all effects in the data generating process are zero this hierarchical

bias will shrink all component parameters towards their common value of zero. Our

derived belief about the largest effect will follow, and the fraction of our histogram (see

previous paragraph) exceeding h will diminish. Thus a hierarchical Bayesian approach will

indeed control (shrink) our FWER counterpart. The numerical details of this control

depend on our specific model of which and how parameters relate to one another: our

Bayesian spatial model of the brain responses over space, be it inspired by a discretely

indexed, exchangeable random process, a Markov random field or a continuously-indexed,

non-stationary process. For illustration here we consider the simplest possible case.
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A simple intuitive simulation

We start by examining a useful hierarchical model with the simplest assumptions. In

neuroimaging this example falls under the rubric of “posterior probability mapping with

global shrinkage priors”, where i indexes voxels of an image.

Assume that we have spatio-temporal measurements on a regular lattice in response

to an occasional auditory stimulus - say a “beep” - which occurs at random time points.

We would like to contrast brain responses to this stimulus against baseline BOLD activity

across the entire brain (or some volume of interest). This is conventionally achieved using

linear regression of observed BOLD on the predicted BOLD, the latter derived by

convolving the stimulus impulse function with the BOLD response function. Omiting

unnecessary details, our model is Vij = βi + xj · Ui + εij where Vij is the observed,

normalized smoothed BOLD observation at time j and voxel i, xj is the convolved BOLD

prediction, εij is measurement error, Ui is the effect of auditory stimulus on voxel i and βi

is a voxel-specific intercept (these latter two are parameters and often elsewhere denoted

θ0, θ1, etc). We will sometimes omit the time subscript j in order to concisely denote the

whole time-series at voxel i with Vi ≡ {Vij : j ∈ J}. To illustrate the statistical concepts

with minimal mathematical distraction we simplify our example still further to

Vij = Ui + εij, where Ui still encodes the voxel-specific effect to our auditory stimulus. This

emphasizes there is really only one parameter of interest in our example, whose value varies

over voxels.

Let I denote the index set over discrete space (the voxel indices) and J the index set

of all discrete time points. The hierarchical approach starts by specifying a model of the

data-generating process. Our example therefore starts by assuming that our data

V ≡ {Vij : i ∈ I, j ∈ J} was generated as follows. The hidden signal Ui are independent

mean-zero Gaussian samples, drawn from a common distribution given unknown
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parameters ψU . Then independent mean-zero Gaussian noise replicates εij are added,

giving the observed Vij = Ui + εij. A parameter ψV specifies the scale of this observation

noise and is shared over all the εij. By assuming this independent, spatially homogenous

error model we intentionally brush aside details of the more realistic scenario, i.e. where

observation noise is spatially and temporally correlated. We write the model

Ui|ψU
iid∼ N(Ui|0, ψU)

Vij|Ui, ψV
iid∼ N(Vij|Ui, ψV ).

We define parameters ψ = (ψU , ψV ), which control the randomness of hidden signal Ui

and observation noise εij respectively, as Gaussian precision or inverse-variance parameters.

Inspired by the frequentist tradition, we provisionally define a family null model as the case

where our observed data Vij was generated from the above model with ψU →∞ for any

ψV <∞, a because it implies Ui ≈ 0 for all i. The latter is just the family null hypothesis

familiar from the conventional, non-hierarchical hypothesis testing framework. We denote

this null data, and inferences based on it, with an asterix, for example V ∗.

If we knew the values of ψU , ψV , then it can easily be shown by Bayes theorem that

uncertain posterior inference Ui|V, ψU , ψV , is also Gaussian, with precision parameter equal

to ψU + nψV and mean parameter equal to nψV ûi

ψU +nψV
, where ûi = 1

J

∑J
j=1 vij is the observed

sample mean. These equations show that a large ψU causes the posterior mean inference to

shrink towards zero and away from the observed sample mean ûi. Posterior uncertainty

given by variance 1/ψU also shrinks to zero, effectively trapping all posterior mass close to

zero. When the family null is true, even the simplest hierachical model will naturally cause

such shrinkage towards zero. Take an empirical Bayes method which first estimates ψ̂U and

ψ̂V from data, before using these estimates to infer Ui via the above equations for the

posterior mean and precision. Then if data V are generated under the family null

hypothesis, such a method will clearly yeild a large estimate for ψ̂U and large shrinkage will
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follow. Crucially, this shrinkage acts on all parameters and therefore shrinks our belief

about the largest effect in the brain: the credible size of the peak effect in the brain

shrinks. We have offered the simplest illustration of the more general idea in the

introduction: hierarchical Bayesian models offer some control on the (Bayesian) family-wise

error by adjusting the estimation process rather than any test threshold.

It is by this mechanism, not the law of large numbers, that hierarchical methods

suppress noise from infered signal under the family null hypothesis. In what follows we use

the shorter notation Ui|V ∗ to denote Ui|V ∗, ψ̂U , ψ̂V . This compact notation is ultimately

more suitable for describing full Bayesian hierarchical inference.

It is important for understanding this paper to note that because all posterior

components Ui|V ∗ converge in probability to zero with bigger infered ψ̂U under family null

data, so does the posterior maximum, denoted Umax|V ∗. We emphasize that this Umax|V ∗

refers to the distribution of the posterior maxima and not the familiar maxima of the

posterior distribution, i.e. not to the maximum a posteriori or MAP estimate.

Results

Discussion

Statistical errors accumulate whenever one estimates or tests multiple unknowns from

data. This problem plagues science and engineering, but is particularly acute in imaging

biology and omics, where there may be millions of unknowns. A conventional solution is to

adjust test thresholds to limit aggregate error over tests, often defined as the “family-wise

error rate” (FWER). Modern hierarchical Bayesian solutions instead adapt

hyper-parameters in order to shrink error over estimators, not tests. Despite the enduring

popularity of both approaches, it remains unclear how exactly they relate to one another,

i.e. does shrinking estimation error automatically limit test error? Here we illustrate that
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Figure 1 . The marginal distribution of one element Ûi|u∗ of a classical signal estimator

Û |u∗ in blue, the distribution of the maximum of that classical estimator Ûmax|u∗ in red,

and the distribution of the maximum hierarchical Bayesian posterior Umax|v, u∗ in green

(see text for details of notation and simulation). The vertical bar illustrates the

(uncorrected) test threshold h, that would only be correct if our signal had exactly one

element, i.e. |I| = 1. Instead we assume |I| = 100. Under the family null ui = 0, ∀i (upper

plot), the maximum signal estimator in a classical, non-hierarchical model demonstrates

extreme over-estimating, deviating far from the true setting of zero. Classically, this

requires increasing h to correct for multiple tests. In contrast, the posterior signal

maximum of our hierarchical Bayesian model automatically shrinks to beneath h.

Critically, this restriction on posterior inference is adaptive to the data. It is automatically

lifted when the underlying signal is not null (lower plot), i.e. when latent target signal u is

more complex and ui 6= 0 but in fact varies randomly over i ∈ I. In the lower panel it was

sampled from a non-null signal distribution on U with ψU = (µ0, τ0) = (0, 1/10). This is

reminiscent of adaptive testing, in which the test threshold - rather than estimator -

changes according to inferred signal variation.
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under the family null hypothesis, hierarchical estimation automatically limits FWER to an

acceptable level. This makes conventional test adjustments unnecessary. Our results

strengthen previous work which emphasizes hierarchical control of the, less conservative,

False Discovery Rate.

This joint posterior may be, for example, defined on a set of a priori exchangeable

random coefficients in a multilevel model: it’s maxima just encodes my posterior belief in

the magnitude of the largest of those coefficients (which “should” be zero for this data) and

can be estimated for example by MCMC. The idea is that hierarchical Bayesian extreme

values helpfully contract to zero with the number of coefficients in this setting, while

non-hierarchical frequentist extreme values increase. The latter being more typically

quantified by other “error” parameters such as FWER “multiple comparisons problem” or

MSE “overfitting”. Thus, this offers a clear way to show that hierarchical inference can

automatically control the (weak) FWER, without Bonferroni-style adjustments to the test

threshold. Mathematically, I imagine some asymptotic – in the number of coefficients –

argument for this behavior of the maxima, that I would need time or collaboration to

formalize (I am not a mathematician by any means). In any case, the intuition is that

because posterior coefficients are all increasingly shrunk, so is their maximum. I have

chosen to study the maxima because it is applicable across the very different hierarchical

and frequentist models used in practice in the fields I work on (imaging, genomics): spatial,

cross-sectional, temporal, neither or both. For example, the posterior maximum is defined

for a discretely indexed, exchangeable random process, or a continuously-indexed,

non-stationary process. As a point of interest, frequentist distribution of spatial maxima is

used for standard style multiple-comparisons adjusted p-values in mainstream

neuroimaging, e.g. SPM.
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