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Abstract: Surprise drives learning. Various neural “prediction error” signals are believed to underpin
surprise-based reinforcement learning. Here, we report a surprise signal that reflects reinforcement learn-
ing but is neither un/signed reward prediction error (RPE) nor un/signed state prediction error (SPE).
To exclude these alternatives, we measured surprise responses in the absence of RPE and accounted for
a host of potential SPE confounds. This new surprise signal was evident in ventral striatum, primary sen-
sory cortex, frontal poles, and amygdala. We interpret these findings via a normative model of surprise.
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INTRODUCTION

The concept of prediction error has taken center stage in
many theories of learning, most notably in reinforcement
learning. In “model-free” reinforcement learning, reward
prediction errors (RPEs) learn the value of being in some
context or state (Balleine et al., 2008; Dayan and Niv, 2008;
McClure et al., 2003; O’Doherty et al., 2004). In “model-
based” reinforcement learning, state prediction errors
(SPEs) can learn an internal model of probable consequen-
ces of being in some state—i.e., they learn state transition
probabilities. In both cases, PEs capture how “surprising” a

reward/state is and how to adjust expectations accordingly
(see Information Box). PE theories are appealing because of
their conceptual simplicity: they simply learn from unex-
pected events. Yet it is unclear whether all surprise is
reducible to some un/signed PE. This is because most
experiments confound different forms of surprise: events
far from the average, “expected” value are also improbable.
We therefore looked for evidence of improbability-based
surprise not reducible to RPE or SPE. We specifically asked
whether two identical rewards, with identical RPE, could
evoke different brain responses based on their relative
probability, while taking care to exclude SPE mechanisms.

In our paradigm, some cues predicted bimodal rewards
(one or three coins arose frequently, while two coins were
rare; see Fig. 1). Thus subjects’ seldom observed the aver-
age number of coins and rarely received the average mon-
etary payment (the “expected reward”). Instead they
usually received the extreme payments of one and three
coins. Because RPEs reflect the difference between
observed and expected reward, and the average reward
corresponds to the expectation, RPEs are zero when partic-
ipants observe two coins (i.e., d50, see Information Box).
However, surprise should be highest for these very same
trials where RPEs are zero on average. Other cues pre-
dicted unimodal rewards: rewards for which this expected
value—two coins—was frequent and unsurprising (see Fig.
1). According to model-free reinforcement learning, no
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learning takes place in the absence of a RPE; i.e., these theo-
ries provide no mechanism whereby the subject can learn
that the two-coin outcome is surprising in one case but not
the other.

In contrast, a “model-based system,” which encodes
how likely each possible outcome is, may exploit SPEs to
learn this discrimination (see Information Box). For this
reason, differential brain responses to the two-coin out-
come must reflect the model-based system, being either
un/signed SPE or surprise per se, i.e., conditional improb-
ability. We seek to identify surprise per se, by contrasting
hemodynamic responses to the improbable versus proba-
ble “expected reward”, i.e., the two-coin outcome under
bimodal versus unimodal distributions, while including
SPE covariates in our statistical analysis.

Information Box: Model-Free RPEs

and Model-Based SPEs

Surprise as captured by prediction error (PE or d) has
played an essential role in the interpretation of data from
single cell recording and from neuroimaging studies (Fris-
ton, 2009; Glimcher, 2011; Rescorla and Wagner, 1972;
Schultz and Dickinson, 2000; Schultz et al., 1997; Sutton
and Barto, 1998): PE is defined as the difference between
observed and expected quantities. A scalar RPE features in
theories of “model-free” reinforcement learning and per-
mits subjects to calibrate their reward expectations
(Rescorla and Wagner, 1972; Schultz et al., 1997; Sutton
and Barto, 1998). Following cue i, the RPE dRi

simply codes
the difference between received and expected reward,
dRi

5Ri2hRi
. This RPE is signed, meaning that more

reward than expected, corresponding to positive RPE, has
a different meaning from (i.e., is “better than”) less reward
than expected, which corresponds to a negative prediction
error. During learning, the expected reward hRi

may be
updated on each trial according to hRi

 hRi
1adRi

, where
a is a learning rate parameter. One could argue though
that the amount of surprise should not depend on the sign
of the RPE. This notion can be captured with unsigned
RPEs which are simply the absolute value of dRi

, denoted
jdRi
j. Unsigned RPE can be used to guide attention.

While RPEs learn the expected value of each cue i,
SPEs learn the probability of each specific outcome (see
Ludvig et al., 2012; Sutton and Barto, 1990). Assuming
that one of J discrete outcome states may follow cue i, a
model-based system may express J signed SPEs, each
denoted dSij

, and J unsigned SPEs, denoted jdSij
j, in

response to the attained outcome. Each SPE has the
form dSij

5sij2hSij
, where Sij indicates a binary transition

(1 for yes/ 0 for no) from cue i to outcome j and hSij
is

the expected probability of this transition. The expected
state transition probabilities hSij

may then each be
updated according to hSij

 hSij
1adSij

.
In applying these definitions to our task (see Fig. 1),

we assume that the reward R on each trial—which

drives model-free RPE learning—is simply equal to the
magnitude of financial payoff, i.e., 1, 2, or 3 Swiss francs
(CHF, see Fig. 1). Regarding model-based SPE learning,
note that there are nine transition probabilities in total in
our task: three outcomes j for each possible cue i (see
Fig. 1). In our task, j 2 CHF 1;CHF 2;CHF 3f g; i
2 cue 1; cue 2; cue 3f g: To take a concrete example, imag-
ine a trial in which three coins followed cue 1, then S135

1 while S1150 and S1250. The model-based system then
expresses three signed SPEs dS1j

and three unsigned
SPEs jdS1j

j in response to the outcome. The expected state
transition probabilities hS1j

may then each be updated
according to hS1j

 hS1j
1adS1j

. Because this model-based
system may learn that two coins are likely to follow cue
2 but not cue 1 or cue 3, it can learn discriminations that
the model-based system cannot (see Introduction and
Fig. 1).

Both the models considered above learn about the
rewards/states and express some form of mismatch
between prediction and observation. While un/signed
PE expresses the (un/signed) arithmetic difference
between some expectation and observation (Dayan
et al., 2000; Friston et al., 2006; Pearce and Hall, 1980;
Roesch et al., 2012), the present study looks for signals
which code the conditional surprise or improbability of
an event but are not reducible to PE (MacKay, 2003).

METHODS AND MATERIALS

Participants

All subjects had normal or corrected-to-normal vision

and were screened to exclude those with a previous his-

tory of neurological or psychiatric disease. All gave

informed consent and the study was approved by the

Ethics Committee of the Canton of Zurich. After complet-

ing a consent form and MR safety questionnaire, partici-

pants were invited to read the task instructions.

Procedure and Rationale

Naive subjects viewed visual stimuli presented against a

black background on a computer monitor while in an fMRI

scanner. On each trial one of three visual cues (fractals) was

presented at random on the left or the right of the screen.

After 2 6 1 s this cue was replaced by coin(s) in the center of

the screen indicating a monetary reward of 1, 2, or 3 Swiss

francs (CHF). Subjects stood to win the amount indicated if

they correctly reported the side of the cue with a button-

press. This task served only to maintain attention and was

designed to be easy: on any one trial, the predictive cue was

perceptibly either on the left or the right, 5 cm from the mid-

line. In line with this, subjects performed this incidental lat-

erality judgment task at ceiling, for all cues and reward

levels. The reward following each cue was sampled
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randomly from a cue-specific probability distribution—which
was unknown to the subjects (see Fig. 1). Each cue yielded
two CHF on average but with a different probability distri-
bution over monetary rewards. In this context, conventional
model-free RPE learning algorithms (Rescorla and Wagner,
1972) can only learn the average or “expected” reward that
is constant over cues, while more recent theories permit sub-
jects to discriminate based on reward variance, risk or preci-
sion (Preuschoff and Bossaerts, 2007; Schultz et al., 2008). In
theory, the model-based system may exploit SPEs to discrim-
inate cue-specific outcome probabilities even when RPEs
cannot help them e.g. when RPE is zero.

We wanted to ensure that all surprise responses in this task
were cue-specific; i.e., that they reflected discrimination learn-
ing and not some other improbable feature of the outcome.
We therefore arranged that, over all trials, cues, and rewards
were presented with the same (marginal) frequency (Fig. 1).
This ensured that novelty/familiarity of cues and outcomes
were controlled because subjects saw each cue and reward
the same number of times throughout the experiment. This is
important because novelty may also elicit responses in the
midbrain dopaminergic system implicated in RPE-processing
(Ljungberg et al., 1992). Recency effects were constant because

the presentation rate of each cue or reward was the same.
Thus if subjects failed to discriminate cue-specific reward dis-
tributions, they would be equally surprised by all rewards.

To further control for PE, our regression included trial-

specific unsigned and signed PEs as covariates, see (Pearce

and Hall, 1980; Roesch et al., 2012). To assess behavioral evi-

dence for learning, we asked subjects to report the probabil-

istic contingencies explicitly after the fMRI session: this

probed their declarative “model” following learning. We

also conducted a separate behavioral study with the identical

design—except that different subjects were required to report

the magnitude of rewards at the end of each trial. The pur-

pose of this study was to provide additional behavioral evi-

dence for the relevance of surprise. In particular we asked if

response times increased on conditionally surprising trials.

Behavioral Study 1

In behavioral study 1, we studied sixteen healthy male

volunteers (age range: 20–25 years). The purpose of this

study was to establish the behavioral relevance of surprise.

Subjects observed cue (fractal)—reward (coins) associations

Figure 1.

The trial structure. With 1/3 probability one of three cues is randomly presented. Cues were

presented for 0.8 s (behavior) or 1–3 s (fMRI), immediately followed by 1, 2, or 3 monetary

units, presented with the indicated conditional probabilities. All cues/outcomes are presented

the same number of times, the only predictable structure being in different probabilistic associa-

tions between each cue and the reward. Timings for the fMRI and pure behavioral studies are

given above.

r Surprise Beyond Prediction Error r

r 4807 r



on the computer screen and reported the number of coins
via key press, as quickly and accurately as possible (timing
parameters given in Fig. 1). If subjects correctly reported
the number of coins within a 500 ms time-window, they
stood the possibility to win the equivalent money (a subset
of 10 attempts were randomly selected and paid at the
end). By experimental design, cues preceded the financial
reward, CHF 1, 2, or 3 (see Fig. 1). There were three sessions
separated by a 3 min break. All rewards were independent
samples from the conditional distributions shown in Figure
1. In each trial of sessions two and three, the cue was drawn
randomly with probability 1/3. Session 1 cues were pre-
sented in sequence i.e., 40 presentations of cue 1, then 40 of
cue 2 then 40 of cue 3. We used all three sessions for the
behavioral analysis. The actual frequencies presented to
subjects were forced to be the same as those illustrated in
Figure 1: we achieved this by drawing the outcome on each
trial without replacement from an “Urn” containing 40 out-
comes arranged in the proportions given in Figure 1, i.e.,
[18/40, 4/40, 18/40] and [4/40, 32/40, 4/40]. While this
technically introduces a little dependence in trial-by-trial
realizations—draws are not identically and independently
distributed – it ensures consistent surprise responses
between subjects with a relatively small number of trials.

fMRI

Using fMRI we studied 19 different male participants (age
range: 20–25 years), presenting exactly the same cue-reward
contingencies as above—but asked subjects to report the lat-
erality (left/right) of the cue on each trial. This incidental
behavioral task was the same for all cues and therefore inde-
pendent of the cue-specific reward associations of interest.
This meant that reaction time and response inhibition are
not confounded with subjective surprise (as it was in the
preceding, strictly behavioral, task). Task instructions intro-
duced subjects to the visual cues (fractals) and outcomes (1,
2, or 3 coins) and informed subjects that each cue would be
followed by 1, 2, or 3 coins that were “available to win” (1
coin 5 CHF 1). On each presentation of a cue, subjects were
asked to report the position of the (fractal) cue on the screen
by left/right button-press. They were told that success in
this task determined their final monetary payoff. Specifi-
cally, a random subset of 10 trials per block would be
selected after the experiment for payment: If subjects had
successfully reported the cue-location within time, the corre-
sponding money would be paid out. Subjects were told that
they could not predict which cue would appear on any trial
but that there “may be a relationship between the cue and
the number of coins available.” Participants’ earnings were
calculated for each session of the experiment.

Task and contingencies

Each trial started with a variable ITI with only a fixation
cross visible in the center of the screen. The ITI length was
sampled uniformly from the interval 4–6 seconds. The ITI

was followed by the presentation of one out of three visual
(fractal) cues, randomly on the left or right of the screen,
for 1–3 seconds. At the offset of this cue, 1, 2, or 3 coins
were presented, indicating money available to win. Fol-
lowing the presentation of coins, participants were shown
the fixation cross again. There were three sessions sepa-
rated by a break. All rewards were independent samples
from the conditional distributions shown in Figure 1. In
each trial of sessions two and three, the cue was drawn
randomly with probability 1/3. In session 1, cues were
presented in sequence i.e., forty presentations of cue1-
reward, then forty of cue 2-reward then forty of cue 3-
reward. The cue-outcome assignments, as well as the order
of blocks in session 1, were counterbalanced across sub-
jects. To preclude brain responses based on novelty, famili-
arity or recency effects, we excluded session one from the
fMRI analysis. The fMRI results below therefore report on
sessions two and three. Each session was 10-min long with
two 3-min breaks in between.

Behavior 2

After scanning, we elicited subjects’ belief about the rel-
ative frequency of 1, 2, or 3 coins associated with each of
the three cues, which probed their declarative knowledge
of the probabilistic contingencies (bimodal versus unimo-
dal). To elicit self-reported beliefs about the relative fre-
quency of each outcome, subjects were given three sheets
of paper, one for each cue. At the top of each page was a
picture of the cue: along the bottom of the page were pic-
tures of 1, 2, and 3 coins (the same pictures that reported
outcomes during the task itself). Above each coin(s) was
an empty space. For each coin outcome, subjects used a
pencil to report, “the percentage of times this number of
coins followed this cue.” A histogram was deemed
“bimodal” if and only if the probability assigned to out-
come 2 was lower than the probability assigned to both
outcome 1 and outcome 3. Otherwise the histogram was
deemed “unimodal.”

fMRI Data Acquisition

Images were acquired using a Philips Achieva 3T
whole-body scanner with an eight channel SENSE head
coil (Philips Medical Systems, Best, The Netherlands) at
the Laboratory for Social and Neural Systems Research
(SNS Lab), Zurich. Subjects viewed the stimuli through a
mirror fitted on top of the head coil. We acquired gradient
echo T2*-weighted echo-planar images (EPIs) with blood-
oxygen-level–dependent (BOLD) contrast (slices/volume,
37; repetition time, 2.47 s). Approximately 350 volumes
were collected in each session of the experiment. Scan
onset times varied randomly relative to stimulus onset
times. Volumes were acquired at a 115� tilt to the anterior
commissure-posterior commissure line, rostral> caudal.
Imaging parameters were the following: echo time, 30 ms;
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field of view, 220 mm. The spatial resolution of the func-
tional data was 3 3 3 3 3 mm. A T1-weighted 3D-TFE
high-resolution structural image was also acquired for
each participant. For this, the following parameters were
used: Repetition Time (TR) 5 7.4 s, Echo Time (TE) 5 3.4 s,
inversion time (TI) 5 876.2 ms (minimum TI delay), Flip
angle (deg) 5 8, Field of view (FOV) 5 250 3 250 (3180),
matrix size 5 240 (Reconstruction matrix), voxel size 5 1 3

1 3 1 (1.041 reconstructed); Acquisition time 5.57 min.

fMRI Image Analysis

Statistical parametric mapping (SPM8; Functional Imag-
ing Laboratory, University College London) was used to
spatially realign functional data, and coregister them to
the individual anatomical image before normalizing to
standard MNI space and smoothing with an isometric
Gaussian kernel with a full-width at half-maximum of 9
mm.

First-level design (within-subject)

For each subject, we used linear regression to model
fMRI BOLD responses to each of the nine cue-conditional
outcomes, i.e., one coin following cue 1, two coins follow-
ing cue 1, three coins following cue 1, one coin following
cue 2. . . etc. We used a standard rapid-event–related fMRI
approach in which evoked hemodynamic responses to
stimulus events are estimated separately by convolving a
canonical hemodynamic response function with a stimulus
function encoding the onsets for each event. These nine
events were entered into a design matrix together with six
movement parameters. Our main objective here was to
contrast probable versus improbable rewards, in a condi-
tion which has zero RPE on average, i.e., at the expected
reward of two coins. To exclude SPE explanations, we
therefore added further control variables as follows.

Basic SPE model. We included un/signed SPEs as
“parametric modulators,” conditional on five different
learning rates. Parametric modulators were derived from
the learning models described in the Information Box. Spe-
cifically, they were

1. Signed SPEs associated with state-transitions on each
trial, d

ak

Sij
(see Information Box), conditional on five

learning rates ak50:1; 0:3; 0:5; 0:7; 0:9. By extend-
ing the notation used in the Information Box, these
can be written as d

ak

Sij
.

2. Unsigned SPEs for each learning rate, i.e., jdak

Sij
j.

We used five learning rates because of evidence that
there may be many different learning rates in the brain,
operating simultaneously in different areas (O’Doherty
et al., 2003; Tobler et al., 2007). We did not take an inde-
pendent behavioral or autonomic measure of “the learning
rate” as a proxy for the neuronal learning rate. While this

may be appropriate, it rests on the stronger assumptions
that (1) There is a single neuronal learning rate, (2) the
behavioral learning rate and the neuronal learning rate are
identical. By including five different learning rates, we
gave the PE model the best chance to explain BOLD
activation.

Augmented model. As a secondary confirmation, to fur-
ther exclude RPE based explanations, we confirmed that
any effects remained significant in an augmented model
which also contained un/signed RPEs. To specify this aug-
mented model, we added two further sets of parametric
modulators, also time locked to the outcome of each trial,
to the above design

1. Signed RPE associated with the monetary outcome on
each trial, conditional on five different learning rates
ak50:1; 0:3; 0:5; 0:7; 0:9. These can be written as d

ak

Ri
.

2. Unsigned RPEs for each of the five learning rates, i.e.,
jdak

Ri
j.

In this way, even though RPEs equal 0 for 2 coins on
average, we ensure that we are maximally conservative
when we make the claim that our surprise responses are
not RPE responses: i.e., they are not confounded with any
residual component of an RPE signal.

Optimal surprise model: In a third and final model we
asked whether activations reflected optimal surprise, condi-
tional on a Bayesian learner. Conditional surprise can be
quantified mathematically by Shannon surprise, 2logðPðjjiÞ,
for which subjects must first learn the relative probability of
rewards, denoted by PðjjiÞ, where again j 2

CHF 1;CHF 2;CHF 3f g; i 2 cue 1; cue 2; cue 3f g (Dayan
et al., 2000; Friston 2009; MacKay, 2003). We therefore
looked for evidence of a hemodynamic signal that tracked
the Shannon Surprise expressed by a model-based Bayesian
learner. We trained a simple Bayesian model which learned
the conditional probability of each reward state following
each cue PðjjiÞ and expressed Shannon surprise
2log P jjið Þð Þ. We assumed that P was learnt by updating
multinomial distribution over the random number of coins

j, i.e., P jjið Þ5P jjuið Þ5u
j
i, under i.i.d. assumptions. In this

notation, each element of the 3-vector ui gives the probabil-
ity of receiving 1, 2, or 3 coins following cue i: The super-
script simply indexes these three elements. Assuming an
uninformative (Dirichlet) prior p uið Þ5Dir a; bð Þ, with concen-
tration parameter a51 and uniform base distribution

b5ð13 ; 1
3 ;

1
3Þ, the surprise at observing j coins then

simply corresponds to 2log
nj1

1
3P3

j51
nj11

 !
. Here nj is the

number of times that j coins have followed this cue to date,

so ðnj1
1
3Þ=ð

P3
j51 nj11Þ just reports the (regularized) relative

empirical frequency of j coins given the cue.
This procedure resulted in a trial-by-trial expression of

Shannon surprise which we included as parametric
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modulator of the outcome for each trial. In addition to
this, we included all of the un/signed RPEs and SPEs of
the previous model as covariates of no interest. Our design
included convolved stimulus events for each cue i and
each outcome j, and movement parameters as covariates
of no interest.

The inclusion of five learning rates increased the ability
of RPE (and SPE) to explain variance otherwise attribut-
able to a purely model-based surprise in all three models.
In this way, we ensure that we are maximally conservative
when we make the claim that our surprise responses are
not RPE responses: i.e., they are not confounded with any
residual component of an RPE signal.

Second-level design (between-subject)

We used the standard summary-statistic approach for
inference. Namely, we treated subject-specific first-level
contrast images as observations. To examine the consis-
tency of our effects over subjects we used these contrast
images to calculate a one-sample t-statistic. We first tested
the contrast between hemodynamic responses to the
improbable two CHF outcome versus the probable two
CHF outcome. We then tested the group-level effect of
trial-by-trial Shannon surprise, as elicited by our Bayesian
learner.

RESULTS

Behavior 1

In the purely behavioral study subjects reported the
number of coins presented on the screen. For each subject,
we compared the average time it took to respond to the
improbable two coin outcome (following bimodal cues)

versus the probable two coin outcome (following unimo-
dal cue). Using a one-sample summary-statistic approach,
a t-test showed that subjects were on average 14 ms (95%
CI 5 [2.5, 22.4]) slower in the improbable case (P 5 0.018,
df 5 15). Supporting Information Figure 1 plots subjects’
time to report the “expected reward” (i.e., the two CHF)
following each cue.

Behavior 2

A different behavioral measure was taken from the 19
different subjects in the fMRI study (detailed below). In
debriefing, we asked these subjects to draw a histogram
over coins for each cue (the conditional probability distri-
bution). Grading these as correct if they reported the true
contingency (unimodal or bimodal), only six attempts out
of 57519 subjects33 cues were unsuccessful. Assuming
(conservatively) that subjects chose unimodal and bimodal
distributions with equal probability at chance (for each
cue), a Binomial test gave p < 0:00001 ðN557; u50:5Þ. Sub-
jects therefore acquired an accurate declarative “model” of
the contingencies.

As can be seen in Figure 2, the self-reported distribu-
tions qualitatively matched the real distributions. Apart
from bi- versus unimodality, there was some suggestion of
probability distortion (Tversky and Kahneman, 1992):
small probabilities tended to be over-estimated and larger
ones under-estimated.

fMRI Study

We first analyzed brain data with the basic model, in
which SPE served as covariates of outcome-related
responses. A between-subject (random effects) analysis
contrasted hemodynamic responses to the improbable

Figure 2.

Self-reported frequency of each outcome—1, 2, or 3 coins—conditional on each of the three

cues. Blue circles indicate the mean frequency reported by subjects after the task. Dotted lines

correspond to 95% confidence bounds. Red squares indicate the true frequency with which each

outcome followed each cue, i.e., ground truth (see also Fig 1). The self-reported frequencies

reflected the actual frequencies reasonably well.
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versus probable two-coin outcome. This revealed four
regions of activation. These effects were significant follow-
ing multiple comparison correction across the whole brain
[i.e., family-wise error (FWE) cluster-level whole-brain cor-
rected with p50:001 as cluster-inducing height threshold].
We found significant cluster activations in the right frontal
pole, P 5 0.026, x 5 (21, 47, 1), bilateral occipital lobe,
P< 0.001, (221, 279, 211) and (27, 279, 211) respectively,
the right amygdala P 5 0.012, (54, 24, 214) and the right
mid frontal gyrus P 5 0.013, (27, 8, 52), see Figure 3.
Because the ventral striatum (VS) is strongly implicated in
RPE, we wondered whether it would also be sensitive to
conditional improbability. A small volume analysis using
an anatomical definition revealed activation in the right
VS, significant at cluster and peak level (P 5 0.037 and

P 5 0.04). This is also visible in Figure 3D. Importantly, all
of these activations were also significant in an augmented
model which additionally controlled for un/signed RPE
explicitly as a covariate (see “First-level design” section).

We next looked for evidence that the brain tracks trial-
by-trial Shannon surprise (see the final model of “First-
level design”). A between-subject (random effects) analysis
examined the average effect of Shannon surprise, having
controlled for un/signed RPE and SPE in the analysis. We
again found strong bilateral occipital activation, P< 0.001,
(218, 291, 25) and (27, 279, 211) respectively and right
frontal pole activation, P 5 0.017, (21, 47, 1). Additionally,
we found activation within the right superior parietal
gyrus, P 5 0.012, (30, 270, 49). We did not find ventral
striatal activity following a small volume correction.

Figure 3.

Hemodynamic response to surprising, improbable rewards that

carry no RPE. We used linear regression to assess hemodynamic

responses to improbable versus probable rewards, under a con-

dition with zero RPE on average. This statistical analysis con-

trolled for un/signed SPEs. We found significant cluster

activations in the right frontal pole (A), bilateral occipital lobe

(B), the right amygdala (C), and the right mid frontal gyrus (D).

The VS activation partly visible in (D) survived small volume cor-

rection using an anatomical definition of VS. These activations

are consistent with surprise at the sensory properties of the

outcome, i.e., the reward state, and/or surprise at the rewarding

aspects of the outcome. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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Following the request of a reviewer, we repeated all of
the above analyses with 6 mm smoothing and observed a
very similar pattern of significant activation in each case.
Interestingly, this analysis now revealed a significant Shan-
non surprise activation in right VS following small volume
correction.

DISCUSSION

We have studied reward learning in a passive learning
situation. It is known that existing RPE schemes do not
fully account for learning in this setting (Dayan and Niv,
2008; Schultz and Dickinson, 2000): For example, they
have limited capacity for subjective uncertainty (Preusch-
off and Bossaerts, 2007; Schultz et al., 2008) and simply
associate each cue or “state” with a single value. Experi-
mental evidence points to simple learning in the absence
of RPEs, e.g. experiments in the conditioning literature on
what is known as “identity unblocking,” where a change
in the identity of the rewarding stimulus leads to new
learning, even when the amount of “reward” is properly
controlled for (Burke et al., 2008; Bornstein et al., 2011;
McDannald et al., 2012; Rescorla, 1999). In contrast,
humans and animals can use environmental cues to pre-
dict the likelihood of specific outcomes (Balleine, 2005; Bal-
leine et al., 2009; Dayan and Balleine, 2002; d’Acremont
et al., 2013; Fletcher et al., 2007; Gl€ascher et al., 2010; Grif-
fiths, 2007). There is evidence that such “internal models”
are learned via other forms of SPE. To isolate the neuronal
substrate of surprise—not attributable to RPE or SPE—we
have used a simple Pavlovian task which the model-free
RPEs cannot learn because RPEs in response to outcomes
eliciting high versus low conditional surprise are zero and
statistically controlled for SPE explanations.

We showed that there are surprise responses that cannot be
accounted for PE. We also observed surprise signals in the
right frontal pole (Fig. 3A), bilateral occipital lobe (Fig. 3B),
the right amygdala (Fig. 3C) and the right mid frontal gyrus
(Fig. 3D). A small volume analysis revealed significant sur-
prise effects, beyond PE, in the VS. Primary visual and frontal
polar activations were replicated across all of our analyses.

Primary visual responses are consistent with subjective
surprise at sensory features of the outcome: i.e., reward
identity as opposed to a scalar reward value or utility
(Alink et al., 2010; Dayan and Niv, 2008; Kok et al., 2012).
This response may reflect top–down attention effects that
follow in the wake of surprise. In any case, a surprise
effect in early visual cortex accords with theories holding
that top–down predictions modulate the response of pri-
mary sensory regions to incoming sensory information.
From this perspective our data emphasize that these pre-
dictions are probabilistically sophisticated: neither scalar
nor unimodal (Gaussian). Our data may also cast light on
earlier studies that showed PEs modulate visual cortex
responses and its connectivity during associative learning
(den Ouden et al., 2009, 2010; Summerfield and Koechlin,

2008; Summerfield et al., 2008;) but did not dissociate sur-
prise. Our empirical dissociation of surprise serves as a
reminder that prediction errors are not the only way to
understand such learning.

Frontal polar responses occurred in a region implicated
in sophisticated model-based capabilities, including goal-
directed reasoning and general problem-solving (Genove-
sio et al., 2013). This region evolved after the split between
New World and Old World primates, and may have spe-
cifically evolved during ape and human relation (Genove-
sio et al., 2013).

There are two distinct notions of surprise relevant to
paradigms like ours. The perceptual surprise associated with
perceptual state or “identity” of the outcome (based on
probabilistic distributions over a perceptual space) which
we have emphasized thus far is, at least conceptually, dis-
tinct from the utility surprise about how rewarding the out-
come is. This latter would require a probability
distribution over the scalar “utility” or “reward value.”
Crucially for us, in our task neither can be learned with
simple RPE-based surprise mechanisms. To maximize the
subjective and hemodynamic impact of surprising events
perceptual surprise and the utility surprise were intentionally
aliased or confounded in our design, i.e., a reward value
or “utility” of one CHF is associated with a given visual
percept (a circle/coin), a reward value of two CHF is asso-
ciated with another percept (two overlapping circles/
coins) and a reward value of three CHF is associated with
a third percept (three overlapping circles/coins). In princi-
ple, by simultaneously evoking perceptual surprise and util-
ity surprise, our design gains sensitivity to either effect at
the cost of losing specificity about which effect is responsi-
ble. In practice, however previous literature suggests a sig-
nificant disjunction between the brain regions involved in
perceptual versus utility processing. That we observed sur-
prise responses in primary (visual) perceptual regions has
encouraged us to interpret this in terms of perceptual sur-
prise, i.e., consequent from learned associations between
the cue and the perceptual properties of the reward. Con-
versely, the observation of surprise effects in VS and
amygdala points to utility surprise.

Our paradigm relates to the literature on implicit statis-
tical learning in which state-state associations are learned
without any feedback e.g. (Fiser and Aslin, 2001; Turk-
Browne et al., 2005). Our task differs in that we can disso-
ciate reward-independent learning that arises within a
classical reward learning task and exclude common PE
explanations. Previous studies have examined the neural
bases of predictive or causal learning with neutral stimuli
e.g. (Corlett et al., 2007; d’Acremont et al. 2013; Fletcher
et al., 2001; Gl€ascher et al., 2010; Turner et al., 2004). Sev-
eral brain structures appear to code prediction errors in
relation to such learning (Boly et al., 2011; Corlett et al.,
2010; Friston et al., 2006; Friston, 2009; Gl€ascher et al.,
2010; Schultz and Dickinson, 2000). Our analysis revealed
surprise responses beyond PE responses. In other words,
these responses were based on the conditional
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improbability of events, which could not be explained by
the most straightforward formulation of PEs.
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