
www.elsevier.com/locate/ynimg
NeuroImage 38 (2007) 478–487
Technical Note

A Metropolis–Hastings algorithm for dynamic causal models
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Dynamic causal modelling (DCM) is a modelling framework used to
describe causal interactions in dynamical systems. It was developed to
infer the causal architecture of networks of neuronal populations in
the brain [Friston, K.J., Harrison, L, Penny, W., 2003. Dynamic
causal modelling. NeuroImage. Aug; 19 (4): 1273–302]. In current
formulations of DCM, the mean structure of the likelihood is a
nonlinear and numerical function of the parameters, which precludes
exact or analytic Bayesian inversion. To date, approximations to the
posterior depend on the assumption of normality (i.e., the Laplace
assumption). In particular, two arguments have been used to
motivate normality of the prior and posterior distributions. First,
Gaussian priors on the parameters are specified carefully to ensure
that activity in the dynamic system of neuronal populations converges
to a steady state (i.e., the dynamic system is dissipative). Secondly,
normality of the posterior is an approximation based on general
asymptotic results, regarding the form of the posterior under infinite
data [Friston, K.J., Harrison, L, Penny, W., 2003. Dynamic causal
modelling. NeuroImage. Aug; 19 (4): 1273–302]. Here, we provide a
critique of these assumptions and evaluate them numerically. We use
a Bayesian inversion scheme (the Metropolis–Hastings algorithm)
that eschews both assumptions. This affords an independent route to
the posterior and an external means to assess the performance of
conventional schemes for DCM. It also allows us to assess the
sensitivity of the posterior to different priors. First, we retain the
conventional priors and compare the ensuing approximate posterior
(Laplace) to the exact posterior (MCMC). Our analyses show that
the Laplace approximation is appropriate for practical purposes. In a
second, independent set of analyses, we compare the exact posterior
under conventional priors with an exact posterior under newly
defined uninformative priors. Reassuringly, we observe that the
posterior is, for all practical purposes, insensitive of the choice of
prior.
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Introduction

Neuroscientists and psychologists try to understand human
cognitive processes in terms of their mechanistic implementation
in the brain. The prevailing view is that complex acts of
perception, inference and learning are made possible by
functional integration among basic computational components.
Furthermore, these modular computations are performed in
spatially distinct areas of the cortex, and integration proceeds
by means of long distance cortico-cortical connections. At a
micro-mechanistic level, experimental and theoretical neuroscien-
tists have attempted to approach this question via invasive
empirical techniques in experimental animals. Under most
circumstances, such direct access in neurologically normal
humans is clearly impractical.

This challenge has generated the development of a number of
technologies aimed at acquiring information about brain function
distally: EEG, MEG, fMRI, etc. Typically information from these
techniques is inadequate to probe micro-computational structure
(being of poor resolution in some dimension of importance). For
this reason, emphasis is confined to functional integration at a
relatively macroscopic level.1 For any given cognitive process, an
important question concerns which brain areas are active and what
is the network architecture that explains (rather than simply
predicts 2) this activity in terms of other areas.

One recent approach (Friston et al., 2003) has been to describe
the temporal interactions between neuronal populations in the
network as a deterministic dynamical system (a system of
differential equations). Critically, such ‘dynamic causal models’
(DCM) are parameterized in terms of unobserved connectivity
among neuronal states rather than some observed surrogate (e.g.,
hemodynamics as measured with fMRI). Bayesian inversion is
used to access a data-dependent probability distribution, over the
unobserved parameters (the posterior distribution). More precisely,
1 Happily, this level of analysis is also more accessible to cognitive
psychologists and their corpus of theory.
2 By convention, the term “effective connectivity” is used to distinguish

an explicit causal connectivity from “functional” connectivity, which is
identified by some data-led statistical process.
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the core 3 of the model is a set of differential equations. Here, we
demonstrate a new and independent means of accessing the
posterior distribution of the model parameters in these equations.
This approach has the dual benefit of furnishing an exact sample
from the true posterior while requiring weaker prior assumptions.
In this analysis, of one key model architecture (i.e., Mechelli et al.,
2003), we show that our exact posterior is very close to that found
under previous approximate methods (Friston et al., 2003).
Importantly, we also ask, for the first time how prior distributional
assumptions influence the posterior.

This paper comprises three sections. In the first, we review the
nature and form of dynamic causal models and their inversion under
the Laplace assumption. In the second section, we introduce a
sampling scheme that provides samples from the posterior, while
accommodating priors with bounded support. In the final section, we
apply both inversion schemes to an exemplar DCM and evaluate the
difference in the ensuing posterior densities. This section concludes
by looking at the changes in the posterior induced by changing the
priors. We conclude with a discussion of the implications for
inference with DCM and the influence of priors.

Dynamic causal modelling

The basic idea behind dynamic causal modelling of [neuronal]
systems is to construct a reasonably realistic model of interacting
[neuronal] systems or nodes. This model is then supplementedwith a
forward model of how [neuronal] states are transformed into
measured responses. This enables the parameters of the model (i.e.,
effective connectivity) to be estimated from observed data. These
supplementary models may be forward models of electromagnetic
measurements or hemodynamic models of fMRI measurements. In
this work, we will focus on fMRI. Responses are evoked by known
deterministic inputs that embody designed changes in stimulation or
context. This is accomplished by using a dynamic input-state-output
model with multiple inputs and outputs. The inputs correspond to
conventional stimulus functions that encode experimental manip-
ulations. The state variables cover both the neuronal states and other
neurophysiological or biophysical variables needed to form the
outputs. The outputs are measured electromagnetic or hemodynamic
responses over the brain regions considered.

Neuronal dynamics

The equations in a DCM describe neuronal dynamics by a
multivariate differential equation. Typically, for fMRI data, this is
bilinear in the states and inputs,

z�¼ Aþ
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where t indexes continuous time and the dot notation denotes a time
derivative. The neuronal activity zt is an L×1 vector comprising
activity in each of the L regions and the input ut is an M×1 vector
comprising the scalar inputs. These experimentally determined inputs
drive the system and are described as “exogenous” (the spatial
location of these driving variables is not represented in the model4).
3 Core here is intended to imply the mean structure of the observation
likelihood.
4 These inputs variables may equally be bottom-up (sensory) or top-down

(executive) in psychological terms.
They are weighted by the elements ofC. In contrast, the parameters in
the matrix A (those not combined with the inputs) describe input-
independent or “regional” connectivity among the states, z. Finally,
the parameters in the matrix B may be interpreted as modulatory,
interaction or bilinear parameters because ut and zt combine in a
multiplicative (i.e., nonlinear) manner (Friston et al., 2003).5 A
crucial aspect of the parameters relates to the conditions for stability
(dissipation) in the equations of a nonlinear dynamic system. In real
brains, it is not possible for neuronal networks to diverge ex-
ponentially to infinite values. This implies that the real component
of the eigenvalues of the regional coupling matrix A must be
negative. Specifically, when and only when the largest real eigen-
value (Lyapunov exponent) is negative, the stable mode is a point
attractor.

In short, the bilinear approximation reduces the parameters to
three sets that control three distinct things. First, the direct or
exogenous influence of inputs on brain states in any particular area.
Second, the regional coupling of one area to another and finally,
changes in this coupling that are induced by input. Although, in
some instances, the relative strengths of coupling may be of
interest, most DCMs focus on the changes in coupling encoded by
the bilinear parameters.

Hemodynamics

In the fMRI community, an empirically grounded, biophysical
argument has been made for a “forward” model linking the
neuronal states above to observable blood oxygen level-dependent
(BOLD) signals. For the precise form of this model see Friston
et al. (2003). It is defined over four hemodynamic states and
characterizes the hemodynamic response function (HRF) to
neuronal input. The hemodynamic model entails five extra
biophysical parameters for each region that pertain to the induced
vasodilatory signal (rate of signal decay, rate of flow-dependent
elimination, hemodynamic transit time, Grubb’s exponent and
resting oxygen extraction fraction; see Friston et al. (2003). We
refer to parameters in this part of the model as HRF-parameters. In
this paper, we adopt the notation ‘HRF{i}(j)’ to describe the jth
HRF parameter for the ith neuronal area (i.e., state), ‘A(k,j)’ for the
coupling from j to k, etc. Each state in the model also has a
parameter quantifying the mean of the observed time series; as a
variable of no interest, this is treated as a “confound parameter”.

Bayesian inversion

The essence of the Bayesian approach to DCM estimation is to
describe uncertainty about the unobservable parameters (rather than
simply in the observable BOLD dynamics) in the language of
probabilities. More specifically, inference proceeds by the following
trio:

(1) Characterize a joint distribution over the variables (both
observable BOLD dynamics and unobservable HRF- and
neuronal parameters)

pðh; yÞ ¼ pðyjhÞpðhÞ;
5 Neuronal network dynamics may be cast as a nonstationary linear
system that changes according to ut (Penny et al., 2004a,b). Because ut is
known, parameter estimation is tractable.



7 The validity of the approach relies on certain other assumptions, which
we do not assess in this work. (1) The approximation fails if the model is
under-identified or nonidentified. (A model is said to be under-identified
given observation vector y, if the likelihood is constant for some range of
the parameter vector θ; Gelman et al., 2004.) In other words, different θ are
observationally equivalent; there is more than one “most likely” parameter
vector. In such a case, there is no single point to which the posterior will
asymptotically converge. Bayesian analysis of a nonidentified model is
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where θ is a vector containing all parameters in the neuronal
and hemodynamic model and y are possible BOLD data
values. Note that this decomposes into a specification of the
conditional distribution of observables, p(y|θ) and uncondi-
tional prior information on the parameters, p(θ).

(2) Make BOLD observations y, under some experimental
context.

(3) Conditional on the observations, compute an updated, data-
dependent distribution over the unobservable parameters,
using the familiar Bayes’ theorem.

p hjyð Þ ¼ pðyjhÞpðhÞ
pðyÞ :

This furnishes the conditional density on the parameters and
corresponds to model inversion. Conventionally, these
models are inverted using expectation maximization as
described in Friston et al. (2003). This scheme is formally
identical to a variational inversion under a fixed-form (i.e.,
Gaussian or Laplace) approximation to the posterior density
over the signal parameters with the noise parameters (i.e.,
noise variances) fixed. In fact, when the covariances are
parameterized in terms of precision parameters, expectation
maximization becomes identical to variational learning (see
Friston et al., 2007). We will use expectation maximization
below to compare the ensuing posteriors to those obtained
with sampling methods that do not impose a fixed-form on
the posterior.

Gaussian assumptions
Conventional DCM inversion schemes represent all of the

distributions above as (either exactly or approximately) multi-
variate normal/Gaussian (MVN). We remind the reader that a
MVN density over a p-vector θ, is defined by
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where AaRp is a fixed joint mean and Σ is a symmetric, positive
definite matrix containing the variance–covariance elements of θ.
Analytic properties of the joint and marginal Gaussian distribution
are well characterized and constitute clear testable criteria against
which to assess any observed data distribution. For example, it is a
characteristic of the MVN that dependence between the constituent
random variables must be described by their linear correlation.
Similarly for example, for any legitimate μ and Σ, it can be shown
analytically (e.g., Bera et al., 1984) that the marginal distributions
are normal and the standardized third central moments is zero.6 In
what follows, we recapitulate the rationale for the conventional
MVM prior and posterior distributions.

Gaussian approximation to posterior
The conventional normal (Laplace) approximation to the

posterior may be justified by appeal to general limit theorems
6 In general, the third moment is a measure of asymmetry in a distribution
and is zero for exactly symmetrical distributions (approximately zero in the
sample). A right or left skews imply positive and negative third central
sample moments respectively (cubed positive deviations exceed the cubed
negative or vice versa).
(see Gelman et al., 2004). Under certain conditions,7 these
theorems show that for asymptotic data y, generated from any
distribution p(y|θ), governed by parameters θ with prior distribu-
tion p(θ), the posterior distribution over the unobserved para-
meters, p(θ|y) is MVN and converges in probability to θtrue, the
true parameters of the system. With large but not infinite samples,
the MVN (Laplace) approximation may still be good, though this is
not quantified in general (Gelman et al., 2004). In the first part of
our enquiry, we ask whether, for typical n and a typical DCM
model, the MVN is indeed a good approximation.

This is a particularly acute and general question for models of
dynamic systems that are causal in a control theory sense. This is
because the likelihood is a function of the response of a
dynamical system to exogenous inputs. The response is a
generalized convolution of the inputs by generalized [Volterra]
kernels. The key point here is that the kernels are generally
nonlinear functions of the systems parameters; for example, in
DCM the kernels are matrix exponential of the underlying
connectivity matrix, which plays the role of a Jacobian. This is
important because it means the likelihood is nonlinear in the
model parameters. In other words, the posterior must be non-
Gaussian, even with Gaussian priors. The question is how non-
Gaussian? Note that this issue pertains to any generative model of
dynamic systems that is parameterized in terms some underlying
state equations (e.g., the bilinear form above).

Gaussian priors
It is useful to think of prior knowledge of the DCM in terms of

two distinct and exhaustive parameter8 classes: neuronal and
nonneuronal. Prior knowledge of the nonneuronal parameters exists
from previous biophysical empirical work (Friston, 2002) and is
well summarized by parameters of a normal distribution. In contrast,
for any novel application of DCM, priors on the neuronal parameters
may not be available from previous work. Instead, prior knowledge
is in the form of rather general theoretical constraints, i.e., the
eigenvalues of the connectivity matrices. In fMRI, the conventional
joint prior distribution over the elements of A is specified in such a
way as to ensureA’s eigenvalues are negativewith a fixed and known
probability (Friston et al., 2003). In brief, the argument assumes
independent and identical, normal distributions over the off-
diagonal connection parameters of A. This assumption is used to
establish sufficient conditions (in particular, conditions on the
variance of these distributions), that determine the probability of
positive real eigenvalues of A, see Friston et al. (2003).
always possible if a proper prior on all the parameters is specified, but at the
cost that the marginal prior and posterior distributions are identical (the data
do not “inform” the posterior; Poirier, 1998). (2) To attain a unique mode,
the likelihood must be bounded. Because, we have no analytic form for the
likelihood it is difficult to assess this possibility for a given data set, y. (3)
The true solution must have nonzero probability in the prior.
8 Parameters determining the mean structure of the likelihood (as opposed

to the exponential family dispersion parameter[s]).



Fig. 1. Stability regions in parameter space.
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This approach, of shrinking the individual neuronal connectiv-
ity parameters probabilistically, satisfies the eigenvalue constraint
on dissipation at the cost of assuming a Gaussian density with a
carefully specified covariance matrix. Ideally, we would impose
hard constraints on the prior that categorically, rather than
stochastically, satisfy the eigenvalue constraint, thereby allowing
us freedom to implement our true a priori beliefs on the remaining
support of connectivity parameters (which may be uninformative
or anatomically informed).9 To make things clear, consider the
2×2 case for a coupling matrix

A ¼ �1 y
x �1

� �

then the eigenvalues are v ¼ �1F
ffiffiffiffiffi
xy

p
. So the eigenvalues are both

real and negative if 0bxyb1. This region lies in the positive and
negative quadrants of the x–y plane between the axes and the
rectangular hyperbola xy=1. This is the region we would like to
support our priors (but no simple conventional prior has this
bounded support) (Fig. 1).

Ideally, we would like to use a nonnegative prior density only
over this admissible domain of the neuronal coupling parameters.
In what follows, we will define an uninformative prior over this
admissible domain and compare the ensuing posterior with the
posterior under conventional informative (shrinkage) priors.

Methods

The Metropolis–Hastings algorithm and DCM

Here use a Metropolis–Hastings (MH) algorithm10 (Hastings,
1970) with a rejection step to attain a sample from the true
posterior (for a fixed prior) without knowing the normalizing
constant or analytic form for the posterior. Rejection of
inadmissible proposals ensures that sampling only occurs on a
truncated space and allows us to use priors on bounded supports, of
the sort required by the stability constraint of the previous
section.11 In brief, MH involves the construction of a Markov
chain (a sequence of random variables with Markov dependence)
whose equilibrium distribution is the desired posterior distribution.
At equilibrium, a sample from the chain is a sample from the
posterior. Note that the posterior distribution, reconstructed in this
9 It is helpful to consider this in terms of Bayesian ideas of hierarchical
structure. To begin, note that the systemic constraint on the connectivity
parameters restricts the support of possible real eigenvalues to the negative
part of the real number line. Consider placing a uniform distribution on and
only on this support. Conditional on this constraint, a subordinate joint
distribution over the connectivity parameters may then be defined. We will
show that a uniform prior on the eigenvalues has the effect of truncating
inadmissible parts of the joint distribution on the subordinate parameters.
This conceptualization differs from the standard implementation of
hierarchical models in which the supraordinate parameter always figures
explicitly in the functional form of the next level. In contrast, here the
systemic constraint influences the posterior via modifications to its support.
We do not formalize this approach in this work.
10 Because the core of the likelihood is a numerical function of the
parameters, the Gibbs sampling algorithm (which requires an analytic form
in the likelihood) is not an option.
11 We do not assess formally whether imposition of the hard constraint
effects the equilibrium distribution. A similar potential limitation is
described in Appendix A and relates to whether a jumping proposal
distribution affects the sampling effect equilibrium.
way will not be constrained to the normal family, thereby evading a
key limitation of conventional fixed-form inversion schemes. We
describe the general form of the algorithm in Appendix A (for
further details on the general MH algorithm, see Hastings, 1970).
As an illustrative example, we apply the algorithm to a DCM that
has been used in the peer-reviewed literature.

The DCM

We simulated data from a tri-state DCM architecture (for
generality, we refer to the states or regions as “1”, “2”, “3”). With
regard to regional connectivity, “1” feeds into two successive states
(see Fig. 2). With regard to modulatory influences, the 1–2
connection is subject to context-dependent modulation. This
architecture was used in Mechelli et al. (2003) to assess the basis
for computational specialization in the cortex. In total, this model
has 23 unknown parameters: a global scale parameter, an input
parameter, three coupling parameters, five HRF parameters for each
region and three regional confounds. Posterior means of all
parameters were obtained from a typical single-subject DCM
analysis of this study and were used to generate synthetic data.

The synthetic data, used for our study, were obtained by
integrating the system using the posterior parameter means of the
real data. Our data sets comprised three-variate time series with
128 scans, generated in response to 107 events with jittered
onsets and a TR of 3.0 s. We added Gaussian noise to these time
series. For the first phase of simulations, we used two different
signal-to-noise ratios (SNR); one and five. The low value of one
simulates data that have been obtained without any spatial
averaging during fMRI data preprocessing (i.e., smoothing) or
DCM feature selection (i.e., eigenvariate extraction). For DCM,
this low SNR represents the worst case encountered in practice.
The high value of five simulates the upper bound of the SNR
that one can expect in a DCM study. Having established
algorithmic robustness at these extremes we proceed, in the
second phase of simulations with a more typical SNR of 2.5. For
details on generating synthetic data see spm_dcm_create.m
(http://www.fil.ion.ucl.ac.uk/spm).

Convergence and preprocessing

Convergence of the MH Monte Carlo–Markov chain (MCMC)
chains was assessed by two means. Firstly, we assessed whether, for
any given chain, the marginal sample trace for all model parameters
was stable. Secondly, we assessed whether multiple chains, starting

http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Network architecture (and the four coupling parameters); each vertex
or region in the graph has a corresponding time series. These series form the
basis of inference, as described in the main text.
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at different locations, converged to a single distribution.12 These
locations were over-dispersed with respect to the posterior density
obtained with the Laplace approximation. For the model in question
none of the diagnostic criteria refuted convergence. A sequence of
c=750,000 preconvergence iterations (a “burn-in”) was removed
from the MH chain before further analysis. Because the sample
comes from a Markov chain, the posterior realizations are not in-
dependent of one another. This dependence does not bias point
estimates of the posterior, nor does it confound the graphical
summaries we present of the posterior. However, for inference on the
posterior we subsample from the chain to achieve approximate
independence. In particular, a standard first-order linear auto-
regression indicated that discarding intervals of b=20wasmore than
sufficient to assume approximate independence among the remain-
ing observations.

Following this preliminary treatment of the data, our analysis
can be divided into two parts. First, because of its relevance to
conventional practice, we use MH to reconstruct the true posterior
given the conventional specification of the MVN prior (prior
covariances were fixed as described in Appendix B; see Friston et
al. (2003) for details). Second, we assess sensitivity of the posterior
to key changes in the prior; the prior variance of the coupling
parameters in A and B. As indicated above, this crucial question
can now be addressed because the rejection/truncation step in the
algorithm ensures that the system is dissipative and enables us to
choose any prior on the remaining support. In this paper, we focus
on what happens when the prior becomes uninformative.

In both analyses, we examine whether any differences in the
posteriors influence the summaries used by experimentalists, e.g.,
12 The conventional r-method (Gelman et al., 2004) might also be used to
ensure that the chain was mixing well within a single convergence dis-
tribution According to this method, each chain is divided into n sub-chains of
w iterations; a classical statistic is then computed that compares the within-
vs. between-sub-chain variance. The approximate identity of these two
variances is necessary (though never sufficient) to diagnose convergence.
the probability of the parameter over positive support or 95%
Bayesian confidence intervals. In brief, we find that under the
conventional priors (Friston et al., 2003), while deviations from
posterior normality occur, they are subtle and do not affect practical
inferences. We also show that posterior summaries are largely
insensitive to the qualitative choice of prior distribution.

Results

MH vs. Laplace approximate posterior: conventional informative
priors

We start with a comparison of the true (Metropolis–Hastings)
and approximate (Laplace) posteriors by looking at the inferences
based on univariate and bivariate marginal densities. To ensure
stability of the results, we repeated the each simulation four times
and report the results for all replicates separately.

Univariate marginal posteriors

We first assessed the probability that a connectivity parameter is
above 0 (“pN0”), and the 95% confidence interval for that
connectivity parameter. Table 1 gives pN0 for the bilinear
parameter in the model as approximated by Laplace and MH.
For the remaining parameters, the posterior probability was
effectively one, for both methods.

Fig. 3 compares the Bayesian confidence intervals for neuronal
parametersA(1,1),A(2,1),B(2,1),C(1,1), underMCMC (left hand of
each pair) with those under the conventional Laplace approximation
(right hand of each pair). Each pair allows for direct comparison of
the mean and 95% confidence interval of these schemes for an
identical data set (respective means in each pair are connected by a
lateral line). Such comparisons are reported over realizations at two
different noise levels, with SNR=1 and SNR=5. It is self evident
that both the posterior means and the confidence intervals are very
similar under the Laplace approximation and MH.

We examined the pairwise bivariate posterior of the parameters
and found them to have subtle bivariate skew and nonlinear
codependence. Such features are however very small in magnitude
and, for practical purposes, linearity is an appropriate approximation
(see Fig. 4 for the most extreme examples of skew we observed).

Finally, we asked whether these findings would extend to a
different DCM model architecture. In particular we considered a
model used recently in the experimental literature (Kumar et al.,
2007) (see Fig. 5a). Briefly, we found that the posterior under this
architecture has properties very similar to that under the architecture
of Mechelli et al. (2003). In particular, we found good correspon-
dence between the 95% confidence intervals (see Fig. 5b) and
essentially identical probability-above-zero for MH vs. Laplace.

MH vs. Laplace posterior: uninformative priors

In the second set of analyses, we assessed the effect on posterior
distributions and ensuing inference of increasing the prior variance13
13 As we indicated above, having implemented a truncation of the
parameter space to satisfy the eigenvalue constraint, we are free to choose
any prior distributional form; Gaussian or otherwise. We have chosen a
Gaussian with very high variance over the neuronal parameters because it is
effectively indistinguishable from an uninformative prior.



Table 1
Approximate posterior probabilities that the bilinear parameter ‘B{1}(2,1)’ is above zero for the Laplacian approximate posterior vs. the MH sample

Replicate 1 Replicate 2 Replicate 3 Replicate 4

Parameter Laplace MH Laplace MH Laplace MH Laplace MH
‘B{1}(2,1)’ 0.8967 0.8939 0.9717 0.9738 0.9799 0.9840 0.9657 0.9611

The numbers are acquired by integration over the positive support of the normal in the Laplace case, and the proportion of samples above zero in the MH case.
The inference pN0 is not compromised by the Laplace approximation. In all cases, it was within three decimal places of the number as inferred by MH. For all
other neuronal parameters (other than ‘B{1}(2,1)’) at a SNR of one, and every parameter for a SNR of five, the discrepancy between this measure under MH vs.
Laplace vanished and the two gave identical results (essentially all posterior mass being above zero).
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on the neuronal parameters in A and B to 10,000. This makes the
prior uninformative.

Each subplot in Fig. 6 gives four pairwise comparisons of the
Bayesian 95% confidence intervals under informative (left hand of
each pair) versus informative (right hand of each pair) priors, at a
typical SNR of 2.5. Each pair allows for direct comparison of the
95% confidence intervals under these two priors, given an identical
data set. Posterior inference is presented for each of the four neuronal
parameters of interest (A(2,1), A(3,1), B(2,1), C(1,1)).

In Fig. 7, we assess deviations from nonnormality as we change
from strong to weak priors as expressed in the skew of the empirical
distributions (skewbeing zero in theGaussian case).We observed that
in nearly all cases stronger Gaussian priors engender more Gaussian
posteriors (i.e., posteriors with smaller skew). There was a trend for
weak priors to be slightly more skewed, which is an example of the
posterior dependence on the prior. In contrast, there was a good
agreement between the posterior means under the two schemes (see
Fig. 6). Furthermore, examination of the statistic pN0 yielded exact
agreement between these two posteriors in all replications, at this
intermediate SNR (2.5), despite very different priors.
Fig. 3. In each of the 4 subplots, the posterior 95% CI has been constructed accordi
pair), under four realizations at each of two signal/noise ratios (SNR=1 and SN
references to colour in this figure legend, the reader is referred to the web version
Discussion

Exact inference with conventional priors

We report that under conventional priors (Friston et al., 2003)
the Laplace approximation to the posterior yields sensible inferences
under all conditions and for all replications examined in this work.
These analyses illustrate the usefulness ofMCMC for quality control
on any approximation made in the service of expedient inference.

In particular, we observed nonlinearities and skew in the bivariate
posterior samples that were small in magnitude, rendering linear
correlation (or equivalently covariance) an adequate approximation. If
we assess only gross attributes of the posterior, we find that ensuing
inferences are robust to these slight discrepancies from normality.
Critically, it is at this level that operational inferences are made in the
neuroscience literature (e.g., Mechelli et al., 2003). In particular, it is
conventional to infer a specific connection between two states, if the
probability of connection parameter exceeding some threshold is
greater than 95%. On implementing this test, via the MH inversion
scheme, we find that our inferences concur with those of the Laplace
ng to MH (left hand of each line pair) versus Laplace (right hand of each line
R=5). The red line indicates the true parameter. (For interpretation of the
of this article.)



Fig. 4. Examples of posterior bivariate histogram, generated with rejection-
MHwhere iso-contours are approximately, though not exactly, regular ellipses.
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approximation on every count. Similarly, if we plot the 95%Bayesian
confidence intervals as derived from MH, we find that departures of
MH from the Laplace approximation are very small.

We have focused on the power of MCMC for assessing the
quality of a posterior approximation. We suspect that a different
approach is needed to examine the quality of model comparison
approximation. We note that it is currently straightforward to
compute an upper bound on the model evidence during MCMC
simulations such as ours (by simply averaging all likelihoods
accepted by the algorithm; Beal, 2003). While, in practice, this
bound can be used for model comparison, it is not of itself a gold
standard against which to assess the quality of extant model
comparison approximations (e.g. Penny et al., 2004a,b).

Sensitivity to the prior

A characteristic of the conventional scheme is that it is not
possible to fully gauge the sensitivity of the posterior to different
prior distributions. To probabilistically satisfy the dissipation
constraint by means of normal priors, the mean and variance of
these priors must be fixed (i.e., shrinkage priors as in Friston et al.,
2003). In our approach, we are not compelled to fix these values
(nor even use a Gaussian to represent prior knowledge). We
exploited this latitude, imposing hard constraints on the prior in
combination with an uninformative density on the remaining
parameter space. We found a trend towards increased posterior
skew under such priors (Fig. 7). This indicates that the quality of the
Laplace approximation is slightly diminished under informative
priors. In contrast, we observed only small deviations in the mean
under uninformative priors as compared with conventional priors, at
an SNR of 2.5. Furthermore the important posterior measure pN0
was in complete agreement between weak and strong priors. This
suggests that the informative parameters used in current DCM
analyses are unnecessary and may need re-evaluation.

Our hard constraints forced zero prior probability on certain
impossible parameter values a priori (values that imply exponen-
tially explosive neuronal dynamics). In practice, these hard
constraints are implemented in the rejection step in the algorithm.
In general, we foresee complications with the use of hard
constraints in a general MH scheme and more theoretical work is
needed (see Appendix C). Pending resolution of these technical
issues, and given our observations of rather Gaussian and prior-
insensitive posteriors, it is clear that the conventional Laplace
approximation and estimation algorithm (expectation maximiza-
tion) is the most robust, speedy and pragmatic method available.
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Appendix A. The MH Algorithm

For simplicity, we use the notation p(θ) to describe the value of
the density at θ (but note that we always refer to continuous not
discrete distributions). θ* is a proposed vector of parameters, θt−1

is the previously accepted parameter vector. The vectors, y, y*, yt−1

are, respectively, the observed values for the time series, the fitted
values under θ* and the fitted values under θt−1. Λ is a covariance
matrix chosen to give an acceptance ratio of around 20%.

For t=1,K,n
Step 1: if t equals 1; choose some initial values for the Markov

chain: θt−1,
Step 2: Generate a proposed parameter vector θ*∼N(θt−1, Λ),
Step 3: Are all real eigenvalues of Ab0?

If false, reject θ⁎ (do not count θ⁎ towards the sample)
If true, proceed to step 4

Step 4: With probability min(1, r), accept θ* (count θ* in the
sample), where r is defined as

r ¼ pðhTjyÞpðyÞ
pðht�1jyÞpðyÞ ¼

pðhT; yÞ
pðht�1; yÞ

¼ pðhT; yjRm;M ;PÞ
pðht�1; yjRm;M ;PÞ

¼ NðyjyT;RmÞNðhTjM ;PÞ
Nðyjyt�1;RmÞNðht�1jM ;PÞ

Intuitively, the algorithm instructs us to accept a proposal with
certainty if it is more probable in the true posterior distribution,



Fig. 5. (a) Model architecture (see Kumar et al., 2007). (b) In each of the 5 subplots, the neuronal 95% posterior CI has been constructed according to MH (left
hand of each line pair) versus Laplace (right hand of each line pair), under four realizations at signal/noise ratio (SNR=2. 5). The red line indicates the true
parameter. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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otherwise accept it according to how much less probable it is (i.e.,
the ratio r above). The last two lines make explicit that inference is
conditional on Ì and Π, the prior mean and covariance, which is
fixed a priori. Inference is also conditional on Σm, the [restricted]
maximum likelihood estimate of the variance of random effects in
observables (as described in Friston et al., 2003).14

Appendix B. Priors on the coupling parameters

Consider any set of l(l−1) inter-regional connections aij;i≠ j
with sum of squared values ξ=∑aij

2. For any given value of ξ, the
biggest Lyapunov exponent λa obtains when the strengths are equal
aij=a, in which case

ka ¼ a� 1

n ¼ lðl � 1Þa2

This means that as the sum of squared connection strengths
reaches ξ= l/(l−1), the largest exponent attainable, approaches
14 More general (unconditional) results are possible. In particular, the
above conditioning can be relieved by placing distributions over the
parameter sets M, Π, Σm and integrating them out of a larger hierarchical
model.
zero. Consequently, if ξ is constrained to be less than this
threshold, we can set an upper bound on the probability that the
principal exponent exceeds zero. ξ is constrained through the
priors on aij. If each connection has a prior Gaussian density with
zero expectation and variance va, then the sum of squares has
a scaled Chi-squared distribution ξ/va∼χl(l− 1)

2 with degrees of
freedom l(l−1). va is chosen to make p(ξN l(l−1)) suitably
small, i.e.

va ¼ l=ðl � 1Þ
/�1
v ð1� pÞ

where ϕχ is the cumulative χl(l− 1)
2 distribution and p is the

required probability. As the number of regions increases, the
prior variance decreases.

Appendix C

It is of note that truncation of the parameter space from Rp to
some truncated space, say Jp, implies truncation of the proposal.
Our proposal density must be defined exactly over this space. To
define the proposal density adequately at θ*, a renormalization of
the joint proposal density over the new support is required. Such a
proposal density would have the form

q hTjC;Kð Þ ¼ pðhTjC;KÞ
I



Fig. 6. In each of the 4 subplots, the posterior 95% CI has been reconstructed according to flat (left) versus conventional priors (right) under 4 noise realizations at
an intermediate SNR of 2.5.

Fig. 7. Skewness of posteriors under uninformative (left of each pair) versus informative (right) at intermediate SNR (2.5). Within each couple, skewness has
been calculated from identical data.
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where p is normal with mean Γ and covariance matrix Λ, and I is
the normalization constant obtained by the integration,

I ¼
Z
Jp
pðhTjC;KÞdhT:

To assess the implications of this formulation of the proposal
density, we will now examine the nature of I in the context of the
MCMC sampling scheme. It is important to remember that iterative
sampling relies on a sequence of proposal densities {Si: i=1,…, n). A
single (vector-valued) proposal θi* is drawn from each Si in the
sequence. It is usual for sequences to be constructed such that they
actively traverse the parameter–space in somemanner (e.g., a random
walk in which the proposal density Si is considered normal and
centered at the previous accepted parameter value: say, Si− 1). The
proposal density is thus a function of its position in the sequence. For
fixed truncation at the boundary of Jp, this implies that the
normalizing constant I is also variable, say Ii; it is a function of the
proposal’s position in the sequence. Under these circumstances, in
general Ii≠ Ii− 1 and must both be calculated to correctly define

h ¼ qðht�1jC;KÞ
qðhTjC;KÞ

as required by the MH algorithm (this quantity appears as r, in Step 4
of the algorithm). Calculation of these integralswould clearly induce a
costly step in the algorithm.Note, however, two possible remedies: (1)
If the sequence of proposal densities {Si: i=1,…,n) is identical, then
Ii= Ii− 1 for all i. As a consequence I in the numerator and denominator
of h cancel for all h. Alternatively, (2) if the sequence of proposal
densities {Si−1, Si} is similar, we can ensure that if Ii≈ Ii−1. This latter
will hold as long as the proposals are away from the boundaries of the
truncated parameter–space and quite similar in location (relatively
small step-size in the proposal).15 There are no extant analytic
guarantees regarding the general case where this does not hold. Of
course, such complications would vanish when a simple MH scheme
15 The difference between the integral over two tail truncations is
increasingly negligible if truncations at “similar” places (as defined by
small step-size) and both are far into the tail of a normal.
(with no rejection step) is used to reconstruct the true posterior, as is
suitable when the dissipation constraint is enforced probabilistically
(as in Friston et al., 2003). Regarding point (1), while “independence
sampling” is documented in the MCMC literature, it is plagued by
extremely low convergence rate.16 This study has therefore
implemented formulation (2).
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