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Short Report

Human and nonhuman animals respond asymmetrically 
to predicted punishments and rewards (Dayan & 
Seymour, 2008; Kahneman, 2011). In human decision 
making, for example, people pay more to avoid losses 
than to gain equivalent rewards. Because such loss aver-
sion counterproductively diminishes an individual’s 
expected payoffs, it has become one of the most studied 
choice biases. It is unclear whether biological markers of 
punishment or stress exposure—most notably the gluco-
corticoid stress hormone cortisol of the hypothalamic-
pituitary-adrenal (HPA) axis—predict this particular form 
of behavioral punishment sensitivity. Acute glucocorti-
coid administration desensitizes subjects to threat and 
punishment, whereas chronic administration sensitizes 
them, increasing anxiety (Aerni et al., 2004; de Quervain 
& Margraf, 2008; Schelling et al., 2006; Soravia et al., 
2006). This mirrors the mainstream view that acute stress 
responses are adaptive, whereas chronic exposure is det-
rimental (Chrousos, 2009).

There is evidence that HPA-axis traits specifically 
undermine decision making. HPA disturbances predict 
addictive behavior (Koob & Kreek, 2007; Marinelli & 
Piazza, 2002; Putman, Antypa, Crysovergi, & van der 
Does, 2010; Sinha, 2008), and the relation between long-
term HPA activity and pathological gambling (Wohl, 
Matheson, Young, & Anisman, 2008) may reflect altered 
punishment sensitivity. In nonclinical populations, the 
threat of financial loss (i.e., imminent poverty) chroni-
cally elevates cortisol (Haushofer, de Laat, & Chemin, 
2012). Yet it is unknown whether chronically elevated 
cortisol, in turn, alters exposure to new losses by altering 

decision making. Such a feedback cycle might be adap-
tive (negative feedback) or maladaptive (positive feed-
back), depending on whether it limits or exacerbates 
financial loss. In the present study, we sidestepped the 
issue of causation and simply assessed whether an indi-
vidual’s maladaptive loss aversion increased with chronic 
exposure to endogenous cortisol, which we assayed 
using hair samples.

Method

Fifty-seven healthy male undergraduates (18–30 years 
old) took part in the study. An additional 4 participants 
were excluded because 3 had insufficient hair and 1 out-
lier’s hair cortisol was greater than 150 picograms per 
milligram. Sample size was sufficient for power of .99 to 
detect a correlation coefficient of .5 with a Type I error 
rate of .05 (no stopping rule). We used only male partici-
pants to eliminate potential nuisance variation attribut-
able to gender differences in risk taking or HPA-axis 
function (e.g., Byrnes, Miller, & Schafer, 1999; Uhart, 
Chong, Oswald, Lin, & Wand, 2006).

Subjects made 20 binary choices from an existing set 
of 140 choices (Sokol-Hessner et al., 2009) designed to 
measure loss aversion (λ) and risk aversion (ρ). On each 
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trial, subjects had to choose between a guaranteed payoff 
y and a lottery in which they had an equal chance of win-
ning x or losing z (Fig. 1a). Following Wang, Filiba, and 
Camerer (2010), we dynamically selected the most infor-
mative choice from the set for each trial, on the basis of 
subjects’ previous choices. This alternative to staircase 
and bisection methods (Engelmann, Capra, Noussair, & 
Berns, 2009; Engelmann, Damaraju, Padmala, & Pessoa, 
2009) optimally uses subjects’ early choices to exclude 
redundant later choices. Subjects were given 20 Swiss 
francs (CHF) to start. One trial was randomly selected for 
actual payment. Payoffs ranged from −8.75 to 36 CHF 
(average = 6.29 CHF).

We used the utility function u (w+) = w ρ to determine 
positive payoffs (w+) and the utility function u (w–) = 
–λ(w ρ) to determine negative payoffs (w–). Loss aversion 
was quantified by λ: λ = 1 was loss neutral, λ > 1 was loss 
averse, and λ < 1 was loss seeking. Following Sokol-
Hessner et al. (2009) and Wang et al. (2010), we assumed 
that subjects would choose probabilistically. The follow-
ing softmax function mapped preferences to the probabil-
ity of accepting the lottery (µ describes how deterministic 
choices are):

p

e
u x u z u y

lottery|ρ λ µ
−µ

, ,( ) =
+

( ) + ( ) − ( )







1

1

1

2

1

2

We correlated subjects’ (expected marginal posterior) 
loss aversion, ˆ ( ), . . .,λ = E λ|lottery1 20 , and risk aversion, 
ˆ ( ), . . .,ρ ρ= E |lottery1 20 , with a measure of their total expo-
sure to cortisol over the 2 months prior to the study (see 
Sauvé, Koren, Walsh, Tokmakejian, & Van Uum, 2007; 
Stalder & Kirschbaum, 2012; Van Uum et al., 2008; for 
more details on dynamic estimation, see the Supplemental 
Material available online).

Results

The mean loss- and risk-aversion parameters λ̂  and ρ̂  
were 1.86, 95% confidence interval (CI) = [1.65, 2.09], and 
1.00, 95% CI = [0.94, 1.08], respectively (which were not 
significantly different from 2 and 1, respectively; one-
sample t test, n = 56); these results were similar to those 
of previous studies (Engelmann & Hein, 2013; Hsu, Lin, 
& McNamara, 2008; Sokol-Hessner et al., 2009). We 
observed a significant negative Pearson’s correlation 
between loss aversion ( λ̂ ) and cortisol, r(55) = –.33, 95% 
CI = [–.54, –.076], p = .012 (Fig. 1b).�No correlation was 
observed with risk aversion ( ρ̂ ), r(55) = .016, 95% CI = 
[–.25, .27], p = .9 (Fig. 1c). The loss aversion-cortisol rela-
tionship remained evident in a multiple linear regression 
controlling for smoking and shift work, two factors 
known to influence cortisol: β = −10.2, 95% CI = [–18.6, 
–2.0], p = .016.

Discussion

The hormonal response to stressors and punishment is 
governed by the evolutionarily prespecified HPA cascade, 
which is widely conserved in many animal species. Here, 
we observed that individuals with lower chronic cortisol 
displayed stronger loss aversion, a disadvantageous form 
of punishment sensitivity that diminishes individuals’ 
long-term payoffs (Shiv, Loewenstein, & Bechara, 2005). 
Conversely, individuals with higher endogenous cortisol 
weighted losses and gains more equally (i.e., they were 
less loss averse). These results generate new questions. 
First, does long-term cortisol cause changes to loss aver-
sion? Second, is decreased loss-gain asymmetry only due 
to lower predicted punishment from a unit monetary loss, 
or are there also higher predicted rewards from a unit 
monetary gain (punishment-reward sensitivity)? We briefly 
address existing knowledge relevant to these questions.

40 60 80 100 120 140 40 60 80 100 120 140

a b c

Hair Cortisol (pg/mg) Hair Cortisol (pg/mg)

5

4

3

2

1

0

1.5

0.0

0.5

1.0

Lo
ss

 A
ve

rs
io

n 
(λ

)

Ri
sk

 A
ve

rs
io

n 
(ρ

)

Fig. 1. Typical decision screen and results from the experiment. On each trial (a), subjects had to choose between a guaranteed payoff amount 
and a lottery in which they had an equal chance of winning or losing specific amounts. The scatter plots (with best-fitting regression lines) show 
(b) loss aversion (λ̂) and (c) risk aversion (ρ̂) as a function of hair-cortisol level.
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Cortisol crosses the blood-brain barrier, where it has 
neuro-modulatory actions (de Kloet, Joëls, & Holsboer, 
2005; de Kloet, Oitzl, & Joëls, 1999; Fernandes, McKittrick, 
File, & McEwen, 1997; King & Liberzon, 2009) and influ-
ences behavior (Buchanan, Brechtel, Sollers, & Lovallo, 
2001; Øverli, Kotzian, & Winberg, 2002). Neuro-modulatory 
actions include phasic and long-term changes to gluco-
corticoid receptors in limbic and prefrontal regions. 
Behavioral actions include altered punishment- and 
reward-related behavior (Sapolsky, Romero, & Munck, 
2000), effects that depend on the time course of exposure 
(i.e., acute vs. chronic). Putman et al. (2010) demonstrated 
that acute, exogenous glucocorticoids decrease punish-
ment sensitivity on a gambling task in humans: 40 mg of 
oral hydrocortisone increased risk seeking when subjects 
were faced with probable losses. Acute beta-adrenergic 
antagonists, which increase human gambling in the face 
of large probable losses (Rogers, Lancaster, Wakeley, & 
Bhagwagar, 2004) also acutely increase cortisol levels 
(Kizildere, Gluck, Zietz, Scholmerich, & Straub, 2003).

There are interactions between glucocorticoids and 
the central 5-hydroxytryptamine (5-HT) system (Gorzalka 
& Hanson, 1998), itself implicated in punishment pro-
cessing. For example, long-term endogenous exposure to 
glucocorticoids predicts increased 5-HT2A receptor bind-
ing in the parietal cortex (Fernandes et al., 1997). 
Although these alterations may reflect an adaptive stress 
response, other studies demonstrate that increased 
5-HT2A receptor activity is anxiogenic and amplifies 
behavioral response to stressors (Weisstaub et al., 2006). 
Our results encourage the speculation that, within the 
healthy population, long-term exposure to glucocorti-
coids may indeed be adaptive, reducing oversensitivity to 
potential losses. Further work should examine whether 
this hormone-behavior relationship reflects some pre-
specified coordination between psychological and bio-
logical responses to punishment.
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