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Abstract

Classification algorithms are frequently used on data witlatarral hierarchical structure. For in-
stance, classifiers are often trained and tested on trid-mieasurements, separately for each sub-
ject within a group. One important question is how clasdificaoutcomes observed in individual
subjects can be generalized to the population from whiclytbap was sampled. To address this
guestion, this paper introduces novel statistical modielsare guided by three desiderata. First, all
models explicitly respect the hierarchical nature of theadéhat is, they are mixed-effects models
that simultaneously account for within-subjects (fixefibets) and across-subjects (random-effects)
variance components. Second, maximum-likelihood estimas replaced by full Bayesian infer-
ence in order to enable natural regularization of the estimgroblem and to afford conclusions
in terms of posterior probability statements. Third, iefeze on classification accuracy is com-
plemented by inference on the balanced accuracy, whicldsnoflated accuracy estimates for
imbalanced data sets. We introduce hierarchical modets#iisfy these criteria and demonstrate
their advantages over conventional methods using MCMCéamphtations for model inversion and
model selection on both synthetic and empirical data. Wésage that our approach will improve
the sensitivity and validity of statistical inference intdte hierarchical classification studies.

Keywords: beta-binomial, normal-binomial, balanced accuracy, Bareinference, group stud-
ies

1. Introduction

Classification algorithms are frequently applied to data whose underlyingigteus hierarchical.
One example is the domain of brain-machine interfaces, where classifetsed to decode in-
tended actions from trial-wise measurements of neuronal activity in indiVislubjects (Sitaram
et al., 2008). Another example is spam detection, where a classifier isctre@parately for each
user to predict content classes from high-dimensional document sigagtDormack, 2008). A
third example is the field of neuroimaging, where classifiers are used to salgxt-specific mul-
tivariate measures of brain activity to a particular cognitive or perceptiaéd (Cox and Savoy,
2003). In all of these scenarios, the data have a two-level structueg ctimprisen experimental
trials (or e-mails, or brain scans) collected from each member of a gromsobjects (or users, or
patients). For each subject, the classifier is trained and tested on segaatiitens of the trial-wise
data. This gives rise to a set of true labels and a set of predicted labgisately for each subject
within the group. The typical question of interest for studies as thoseidedcabove is: What
is the accuracy of the classifier in the general population from which thiess were sampled?
This paper is concerned with such group-level inference on claggificcuracy for hierarchically
structured data.

In contrast to a large literature on evaluating classification performanamimierarchical con-
texts (see Langford, 2005, for a review), relatively little attention has lolmoted to evaluating
classification algorithms in hierarchical (i.e., group) settings (GoldsteirQ;20tivetti et al., 2012).
Rather than treating classification outcomes obtained in different subjesasgdes from the same
distribution, a hierarchical setting requires us to account for the face#t subject itself has been
sampled from a heterogeneous population (Beckmann et al., 2003; Fristbn2005). Thus, any
approach to evaluating classification performance should accountdénd@pendent sources of un-
certainty:fixed-effectyariance (i.e., within-subjects variability) that results from uncertainty tibou
the true classification accuracy in any given subject; mmtlom-effects varianc@.e., between-
subjects variability) that results from the distribution of true accuracies ipdpalation from which
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MIXED-EFFECTSINFERENCE ONCLASSIFICATION PERFORMANCE

subjects were drawn. Taking into account both types of uncertaintjresguixed-effectiference.
This is a central theme of the models discussed in this paper.

There are several commonly used approaches to performance evalndtierarchical classifi-
cation studies. One approach rests on theoled sample accuragthat is, the number of correctly
predicted trials divided by the number of trials in total, across all subjectsistiial significance
can then be assessed using a simple binomial test that is based on the likefittdidining the
observed number of correct trials by chance (Langford, 2005%.sElsond commonly used method
considers the sample accuracy obtained in each individual subject. Tthedrteen (explicitly or
implicitly) performs a one-tailetitest across subjects to assess whether the true accuracy is greater
than expected by chance (e.g., Harrison and Tong, 2009; Krajbidh 2089; Knops et al., 2009;
Schurger et al., 2010).

Both of these commonly used methods suffer from limitations. First of all, thgleoethe
hierarchical nature of the experiment. The first method represents cadffects approach and
disregards variability across subjects. The second method considdmmeeffects, but does not
explicitly model the uncertainty associated with subject-specific accurddi@®over, both meth-
ods use maximum-likelihood estimation which has a tendency to underestimateiimeeaf the
distribution and thus may show suboptimal predictive performance in relationseen data (i.e.,
overfitting; cf. Bishop, 2007, pp. 27-28, 147). Finally, both above odthassess performance
in terms ofaccuracy which may lead to inflated estimates for imbalanced data sets and thus to
false conclusions about the significance with which the algorithm hasrpextbbetter than chance
(Chawla et al., 2002; Japkowicz and Stephen, 2002; Akbani et al4; 2860od et al., 2007; Zhang
and Lee, 2008; Demirci et al., 2008; Brodersen et al., 2010a).

This paper introduces hierarchical models which implement full Bayesiandrgffects analy-
ses of classification performance that can flexibly deal with differeribpeance measurésThese
models overcome the limitations of the ritualized approaches described d&histethe models in-
troduced here explicitly represent the hierarchical structure of the siataltaneously accounting
for fixed-effects and random-effects variance components. Secamximume-likelihood estima-
tion is replaced by a Bayesian framework which enables regularized estimationodel selection
with conclusions in terms of posterior probability statements (Gelman et al., 20083, our ap-
proach permits inference on both the accuracy and the balanced @caupmerformance measure
that avoids bias when working with imbalanced data sets (Brodersen 62 EdaR

The paper is organized as follows. Section 2 describes both existingpgabimodels for infer-
ring the accuracy and balanced accuracy of classification algorithms gotttext of hierarchical
data sets. Section 3 provides a set of illustrative applications of these modadstosynthetic and
empirical data. Section 4 reviews the key characteristics of these modedisandses their role in
future classification studies.

2. Theory

In a hierarchical setting, a classifier predicts the class label of eaclrials, separately for each
subject from a group. Here, we deal with the most common situation, thah@ylclassification,

1. This paper focuses on parametric models for performance éealudlonparametric methods are not considered in
detail here.

2. All models discussed in this paper have been implemented in MATLABcandbe downloaded fromhttp://
m oss. or g/ sof t war e/ vi ew 407/ .
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where class labels are taken frgm 1,41}, denoted as ‘positive’ and ‘negative’ trials. (The ex-
tension to a multiclass setting is described in the Discussion.) Typically, the algadsttrained
and tested on separate partitions of the data, resultihg=i{0...n} correct andh — k incorrect
predictions. This procedure is repeated for each sulpjesthin a group of sizen.

This setting raises three principal questions. First, what is the classifictmmacy at the
group level? This is addressed by inference on the mean classificatioraagan the population
from which subjects were drawn. Second, what is the classificatiorramcin each individual
subject? Addressing this question by considering each subject in turrssibfobut potentially
wasteful, since within-subject inference may benefit from acrosgstibference (Efron and Mor-
ris, 1971). Third, which of several classification algorithms is best? Tiestipn can be answered
by estimating how well an algorithm’s classification performance generalizesvialata. In par-
ticular, we wish to predict how well a trial-wise classifier will perform ‘oditsample’, that is, on
trials from an unseen subject drawn from the same population as the dagying the presently
studied group.

This section considers different models for answering these quesiiorieep the paper self-
contained, we begin by briefly reviewing the well-known beta-binomial m¢gehrson, 1925;
Skellam, 1948; Lee and Sabavala, 1987). This introduces most of tleemisnwe require for
subsequently introducing two new models designed to support hierdrBlaigasian inference: the
twofold beta-binomial model and the bivariate normal-binomial model.

2.1 Inference on the Accuracy Using the Beta-Binomial Model

A classification algorithm, applied totrials from a single subject, produces a sequence of classifi-
cation outcomess, ..., Yy, which are either correct (1) or incorrect (0). Analyses of theseomiés

are typically based on the assumption that, on any given trial independémetiglassifier makes a
correct prediction with probability & < 1, and an incorrect one with probability-1rt. Thus,
conditional ontt, outcomes are given as a series of independent and identically distrifpiitby
Bernoulli trials,

p(yi |T) =Berny; |T) = (1-m)*Y¥ Vi=1...n

The i.i.d. assumption derives from the assumption that the observations in trsetese i.i.d.
themselves. This assumption is not always made in the context of crosatwalidbut is easily
justified when the data are only split once, without any cross-validatio®{sfussion).

2.1.1 THE BETA-BINOMIAL MODEL

Thei.i.d. assumption about individual classification outcomes allows us to suremaaequence of
outcomes in terms of the number of correctly predicted trialand the total number of test trials,
Thus, classification outcomes are converted into a random vakablg! ; y; which represents the
number of successes ovetrials. Since the sum of several Bernoulli variables follows a binomial
distribution, the number of successes is given by:

pl| ) = Bin(k o) = (Lo o)

In this setting, Bayesian inference differs from classical maximum-likelitesioination in that it
assesses the plausibility of all possible values b&fore and after observing actual data, rather than
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(a) Full Bayesian (b) Full Bayesian (c) Classical
mixed-effects inference mixed-effects inference maximum-likelihood
(explicit notation) (plate notation, with predictive densities) estimation

Beta(ft|a, B) : %‘[D i]\f(njlu,a)

Bin(k|7, i) LT e

Beta(nﬂa,ﬁ‘) 1

Bll’l(k] |le, TL'j) §

Figure 1: Models for inference on classification accuracies. This illistrahows graphical repre-
sentations of different models for classical and Bayesian inferenclassification accu-
racies, as discussed in Sections 2.1 and 2.2. Blank circles corresplatehtovariables,
filled circles represent observed data.

viewing Tt as a fixed parameter which is to be estimated. (Noterthigpends on the experimental
design and is not subject to inference.) It is precisely this problem thaiei the basis of the first
Bayesian analyses published by Bayes and Price (1763) and Lapl&ae®) ( A natural choice for

the prior distributionp(m) is the Beta distribution,

. . (o +PBo) o-1/q  —Bo-1
p(Tt| 0o, Bo) = BetaTt| ao, Bo) T (0o) T (Bo) r(BO)TlG (1—-m™~, (2)

whereo, 3o > 0 are hyperparameters, and the Gamma fundtiohis required for normalization.
Multiplying (1) with (2) gives rise to an overdispersed form of the binomisatribution known as
the beta-binomial model (Figure 1; Pearson, 1925; Skellam, 1948; lce8aravala, 1987).

In the absence of prior knowledge abaytwe use anoninformativeprior by settingag =
Bo = 1, which turns the Beta distribution into a uniform distribution over Bd] interval. The
hyperparametersy and 3 can be interpreted as virtual prior countsof— 1 correct and3p — 1
incorrect trials. Thus, a uniform prior corresponds to zero virtuiarmbservations of either kingl.

Because the Beta prior in (2) isanjugateprior for the binomial likelihood in (1), the posterior
distributionp(mt| k) has the same functional form as the prior,

p(1t| k) = Beta(Tt| an, Bn), 3)

with updated observation courdg = ag+k andf, = Bo+n—k.

In our context, classification is carried out separately for each sulpjih a group, hence the
available data arkj out of nj correct predictions for each subjgct 1...m. One might be tempted
to concatenate these data, form group summa«iesz’j“:l kj andn = ern:1 nj, and proceed to
inference ot However, this would treat as a fixed effect in the population and disregard how the
data were generated. For example, when there are many heterogsulej@ass with few trials each
and a single subject with many trials, the data from this single subject wouldyuddminate the

3. For a discussion of alternative priors, see Gustafsson et al.)2010
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inference at the group level. Put differently, concatenation falselynass zero between-subjects
variability.

This limitation is resolved by explicitly modelling both within-subjects (fixed-effeetad
between-subjects (random-effects) variance components in a hieerotodel comprising two
levels. At the level of individual subjects, for each subjgdhe number of correctly classified trials
k; can be modelled as

. n;j ki ke
p(kj | T, n;) = Bin(k; | 1,n;) = <k¥>ﬂj’(1—ﬂj)”l 4, (4)
|

wheren; is the total number of trials in subjegtandr; represents the fixed but unknown accuracy
that the classification algorithm achieves on that subject. (Note that outiomotwill suppress

n; unless this introduces ambiguity.) At the group level, the model must accoumafiability
across subjects. This is achieved by modelling subject-wise accuradesasfrom a population
distribution described by a Beta density,

_ T(a+P)
RGO

such thato and characterize the population as a whole. This step is formally identical with the
Beta prior placed on the accuracy in (2) which represents uncertaiotyt asefore observing the
outcomek. Equation (5) states that uncertainty about any particular subject igbestified by our
knowledge about variability in the population, that is, the distributiomadver subjects (which, as
described below, can be learnt from the data). Formally, a particulggdisar; is drawn from a
population characterized layandp: subject-specific accuracies are assumed to bei.i.d., conditional
on the population parametexsandf.

To describe our uncertainty about the population parameters, we udesedfior ona and
B which ensures that the posterior will be dominated by the data. One optidd Wweuo assign
uniform densities to both the prior expected accuragya + ) and the prior virtual sample size
a + B, using logistic and logarithmic transformations to put each ¢r®, ) scale; but this prior
would lead to an improper posterior density (Gelman et al., 2003). An alteeriatio put a uniform
density on the prior expected accuracy(a + ) and the inverse root of the virtual sample size
(a+ [3)‘1/2 (Gelman et al., 2003). This combination corresponds to the prior

p(a,p) O (a+B) >/ (6)

on the natural scale. However, although this prior leads to a propemripostensity, it is improper
itself (as indicated by the tilde) and thus prevents computation of the model egidivat is, the
marginal likelihood of the data given the model, which will later become importanhbdel com-
parison. We resolve this limitation by using a proper (i.e., integrable and noedairariant,

p(T | a,B) = Beta(m; | a,B) (1 m)P T, (5)

pla,B) = 5 (a-+B+1) 52 )

which represents a special case of the generalization of (6) profmyséverson and Bradlow
(2002). This prior can be rewritten in an unnormalized, reparameterizedds

P (In (g) ,In(a+ B)) —ap(a+p+1)%2
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which will be useful in the context of model inversion (Gelman et al., 2008p &quivalent graph-
ical representations of this model (using the formalism of Bayesian netwadekisen and Nielsen,
2007) are shown in Figures 1a and 1b.

2.1.2 MODEL INVERSION

Inverting the beta-binomial model allows us to infer on (i) the posterior poipalanean accuracy,
(ii) the subject-specific posterior accuracies, and (iii) the posterioigineglaccuracy. We propose
a numerical procedure for model inversion which is described in detaippeAdix A. Below, we
restrict ourselves to a brief conceptual summary.

First, to obtain the posterior density over the population parametansl3 we need to evaluate

p(kim | a,B) p(a,B)
(1, k : = 8
e BT Km) = oy | o, 8) pla, ) dordp ®)
with kym = (kg ko, ..., km). Under i.i.d. assumptions about subject-specific accuragie® obtain
the likelihood function

p(kim | 0,B) = |m| p(kj | T4) p(1y | o, B) dr; 9
1 L / IRRLY j ]
= I | Bb(k; | a,B),
=

where Blf-) denotes the beta-binomial distribution. Since the integral on the right-haead&(8)
cannot be evaluated in closed form, we resort to a Markov chain Monte B&CMC) procedure.
Specifically, we use a Metropolis algorithm (Metropolis and Ulam, 1949; elis et al., 1953) to
sample from the variables at the top level of the model and obtain{d&ét,3V)} fort=1...c.
This set allows us to obtain samples from the posterior population mean egcura

SENS)

We can use these samples in various ways, for example, to obtain a pointesifrtiee population
mean accuracy using the posterior mean,

c a®
r; a® B0

We could also numerically evaluate the posterior probability that the mean daseifi accuracy
in the population does not exceed chance,
k1:m>

which can be viewed as a Bayesian analogue of a clagsialue. We shall refer to this quantity as
the (posterior)nfraliminal probability of the classifier. It lives on the sanf® 1] scale as a classical
p-value, but has a much more intuitive (and less error-prone) interpnetatither than denoting
the probability of observing the data (or more extreme data) under the ypothesis’ of a chance

a
=Pr{ —— <05
p (M_

3139



BRODERSEN MATHYS, CHUMBLEY, DAUNIZEAU, ONG, BUHMANN AND STEPHAN

classifier (classicap-value), the infraliminal probability represents the (posterior) probabiliéy th
the classifier operates at or below chance. We will revisit this aspect Disiteission.

Finally, we could compute the posterior probability that the mean accuracyeipapulation is
greater than in another,

a® a@
P=P @350 ~ @@+ p@)

Kymv) k1;m<2>> :

The second question of interest concerns the classification accurarididual subjects. Specif-
ically, we wish to infer onp(Tt; | ki:m) to characterize our posterior uncertainty about the true clas-
sification accuracy in subjegt Given a pair of sample@ (™, B(V), we can obtain samples from
subject-specific posteriors simply by drawing from

Beta(nﬁr)

Because samples far and 3 are influenced by datk; ...ky from the entire group, so are the
samples fom;. In other words, each subject’s individual posterior accuracy isnméal by what we
have learned about the group as a whole, an effect knowhrasking to the populationlt ensures
that each subject’s posterior mean lies between its sample accuracy amdupeargan. Subjects
with fewer trials will exert a smaller effect on the group and shrink morelesgubjects with more
trials will have a larger influence on the group and shrink less.

The third question of interest is how one classifier compares to anothaddfess this, we must
assess how well the observed performance generalizes acrosgsulj¢his case, we are typically
less interested in the average effect in the group but more in the efféet teav subject from the
same population would display, as this estimate takes into account both thetfwopaoiaan and
the population variance. The expected performance is expressed fystieeior predictive density,

a® +kj, B(T) +nj— kj) .

p(ﬁ | kl:m),

in which ftdenotes the classification accuracy in a new subject drawn from the spukfon as
the existing group of subjects with latent accuragigs . ., T, (cf. Figure 1bY* Samples for this
density can easily be obtained using the sampl®sandp(® from the posterior population medan.

The computational complexity of a full Bayesian approach can be diminighezsbrting to an
empirical Bayes approximation (Deely and Lindley, 1981). This apprdamhever, is not without
criticism (Robert, 2007). Here, we will keep our treatment fully Bayesian.

2.2 Inference on the Balanced Accuracy Using the Twofold Beta-Bamial Model

A well-known phenomenon in binary classification is that a training set dimgisf different num-
bers of representatives from either class may result in a classifier thiased towards the majority
class. When applied to a test set that is similarly imbalanced, this classifier gielmsimistic ac-
curacy estimate. In an extreme case, the classifier might assign everytssiglase to the majority

4. The term ‘posterior predictive density’ is sometimes exclusively émedensities over variables that are unobserved
but are observable in principle. Here, we use the term to refer to therjpostensity of any unobserved variable,
whether observable in principle (suchfaenr not (such asy).

5. If data were indeed obtained from a new subject (represented iis wirincorrect predictions im Trials), then
p(7t| k1:m, N1:m) would be used as a prior to compute the postepiar| k, A, Ky, N1m)-
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class, thereby achieving an accuracy equal to the proportion of &t balonging to the majority
class.

In previous literature (Chawla et al., 2002; Japkowicz and Stepherz; 2ibani et al., 2004;
Wood et al., 2007; Zhang and Lee, 2008; Demirci et al., 2008; Bredezsal., 2010a), this has moti-
vated, amongst other strategies, the use of a different performanseimetnebalanced accuracy
defined as the arithmetic mean of sensitivity and specificity, or the averageaag obtained on
either class,

cp:%( ). (10)
wherert™ and 1t denote classification accuracies on positive and negative trials, tizgbecl!f
the classifier performs equally well on either class, this term reduces totiverttional accuracy
(i.e., the number of correct predictions divided by the total number ofigtieds). In contrast, if
the conventional accuracy is above chanonby because the classifier takes advantage of an imbal-
anced test set, then the balanced accuracy, as appropriate, will drbartce. We can evaluate the
balanced accuracy in a hierarchical setting by extending the beta-binowrigl, as described next.

2.2.1 THE TWOFOLD BETA-BINOMIAL MODEL

One way of inferring on the balanced accuracy is to duplicate the betaatdhmodel and apply
it separately to the two classes (Figure 2a). In other words, we corthiel@eumber of correctly
predicted positive trialk™ and the number of correctly predicted negative trialsand express our
uncertainty aboup (10) before and after observihg andk™. In a single-subject setting, as in (2),
we can place separate noninformative Beta priorsoand,

p(Tt" [ ag, By ) = Betam" | g, By)
P(TC [ dg,By) = BetdTr [0, By), (11)
whereaj =B = a, =B, = 1. Inference on class-specific accuragigsandr could be done

in exactly the same way as discussed in the previous section. Here, lmpwevare primarily
interested in the posterior density of the balanced accuracy,

1
p(o]kk) = p (Gt +10) \ ).
The balanced accuracy is thus a new random variable defined via tvimgxandom variables
from our model,it™ andtt . Even in a single-subject setting, a closed form for its posterior dis-
tribution is not available, and so we must resort to a numerical approxima&i@uérsen et al.,

2010a). For this, we first note that the distribution of the sum of the two-slassific accuracies,
s:=T1" 411, is the convolution of the distributions far" andm,

S
p(s! o B.an By) = [ P (s—2[ ol BY) pre (2] By) 2

where the subscripts of the posterior distributipps(-) andpy-(-) serve to remove ambiguity. We
can now obtain the posterior distribution of the balanced accuracy bycmeglthe sum of class-

3141



BRODERSEN MATHYS, CHUMBLEY, DAUNIZEAU, ONG, BUHMANN AND STEPHAN

(a) Beta-binomial model (b) Bivariate normal-binomial model

Pt @B @) paply) | v Wishy, (S1A5) N (ulto 2/co)
| Moyl )

- Bin(k7] o). 77)

Figure 2: Models for inference on balanced classification accurathes.figure shows two mod-
els for Bayesian mixed-effects inference on the balanced accusdjs@ussed in Sec-
tions 2.2 and 2.3. The models are based upon different assumptionsranteperizations
and can be compared by Bayesian model comparison.

specific accuracies by their arithmetic mean,

29
P o B0 Br) = [ P (20— 2] o B) (2] 0 By 2
29
= [ Beta2o-2| o B7) Betez |y By ) d2
0

This expression can be approximated by a simple one-dimensional gridaitieegover the0, 1]
interval. In the same way, we can obtain approximations to the posterior megrggterior mode,
or a posterior probability interval.

In a group setting, one can expand the above model in precisely the sgnas Ve the simpler
case of the classification accuracy in Section 2.1. Specifically, we définsedpriors on the class-
specific population parametess” and3™ as well asa~ and3—, in analogy to (7). A graphical
representation of this model is shown in Figure 2a.

2.2.2 MODEL INVERSION

Given that the twofold beta-binomial model consists of two independenticesaof the simple

beta-binomial model considered in Section 2.1 (Figure 1b), statistical inferllows the same

approach as described previously (see Section 3.3 for an applicédoninstance, we can obtain
the posterior population parametepga*, 3% | ki,,) andp(a—, B~ | k,,,) using the same sampling
procedure as summarized in Section 2.1, except that we are now applgipgpttedure twice. The
two sets of samples can then be averaged in a pairwise fashion to obtains&mpl¢he posterior

mean balanced accuracy in the population,

P(®] K m Kem) »
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where we have defined

1 at N o~
¢=3 at+Bt o +p /)

Similarly, we can average pairs of posterior samples fnjrrand T to obtain samples from the
posterior densities of subject-specific balanced accuracies,

p((pi ‘ kf:mv k1_:m) :

Using the same idea, we can obtain samples from the posterior predictisigydefithe balanced
accuracy that can be expected in a new subject from the same population,

P (@] Kim Kim) -

2.3 Inference on the Balanced Accuracy Using the Bivariate NormeBinomial Model

In the previous section, we saw that the twofold beta-binomial model enabilesi-effects in-
ference on the balanced accuracy. However, it may not always tiraadfio treat accuracies on
positive and negative trials separately (cf. Leonard, 1972). Thiit is, andmr were related in
some way, the model should reflect this. For example, one could imaginaip giudy in which
some subjects exhibit a more favourable signal-to-noise ratio than otreigdeo well-separated
classes. In this case, an unbiased classifier yields high accuracigh@mnckass in some subjects
and lower accuracies in others, inducing a positive correlation betwasg-gpecific accuracies.
On the other hand, within each subject, any classification algorithm facedexdff between per-
forming better on one class at the expense of the other class. Thusa@alility in setting this
threshold leads to negatively correlated class-specific accuraciasgament that is formally re-
lated to receiver-operating characteristics. Moreover, if the dedrelass imbalance in the data
varies between subjects, classifiers might be biased in different wgas leading to negatively
correlated accuracies.

In summary,itt and ™ may not always be independent. We therefore turn to an alternative
model for mixed-effects inference on the balanced accuracy that eatpstential dependencies
between class-specific accuracies (Figure 2b).

2.3.1 THE BIVARIATE NORMAL-BINOMIAL MODEL

The bivariate normal-binomial model no longer assumesrttiandt are drawn from separate
populations. Instead, we use a bivariate population density whoseamsastructure defines the
form and extent of the dependency betwegrandrt .

For this combined prior, we use a bivariate normal density. Because théstgldas infinite
support, we do not define it on the accuracies themselves but on theiddsy tn this way, each
subjectj is associated with a two-dimensional vector of class-specific accuracies,
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Figure 3: Distributions of class-specific accuracies in the bivariate ddsmamial model. In the
bivariate normal-binomial model (Section 2.3), class-specific accurapgeassumed to
follow a bivariate logit-normal distribution. This figure illustrates the flexibilitytbis
distribution. Specifically, (a) the standard parameterization is comparedistrigution
with (b) an increased accuracy on one class but not the other, (craged population
heterogeneity, and (d) a correlation between class-specific acaurdtie x- and y-axis
represent the accuracies on positive and negative trials, respgctive

wherea—1(m) := InTi— In(1 — 1) represents the logit (or inverse-logistic) transform. Conversely,
class-specific accuracies can be recovered using

e o(pt
m= ()= (20 e o
TG a(p;)
whereo(p) := 1/(1+ exp(—p)) denotes the sigmoid (or logistic) transform. Thus, we can replace
the two independent Beta distributions for andr in (11) by a single bivariate Gaussian prior,

P(Pj | 1) = A2(pj | K, Z), (12)

in which p € R? represents the population mean ahéd R2*? encodes the covariance structure
between accuracies on positive and negative trials. The resulting density R? is a bivariate
logit-normal distribution (Figure 3).

In analogy with the prior placed amandf in Section 2.1, we now specify a prior for the pop-
ulation parameterg andZ. Specifically, we seek a diffuse prior that induces a weakly informative
bivariate distribution ovef0, 1] x [0, 1]. We begin by considering the family of conjugate priors for
(K, ), that is, the bivariate normal-inverse-Wishart distribution,

P(K, Z | Ho, Ko, Ao, Vo)
0 jz|-($+2) eXp<—;tf(/\oz_l) - Kzo(u—uo)TZ‘l(u—uO)> .
In this distribution, the population hyperparametégsandvg specify the scale matrix and the

degrees of freedom, while the parametgrandkg represent the prior mean and the number of prior
measurements on thescale, respectively (Gelman et al., 2003). A more convenient reietigen
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can be obtained by factorizing the density into

P(Z | Ao, Vo) = Inv-Wishart, (= | AyY) and
P(H| Z, Ho,Ko) = N2(M | Mo, Z/Ko).

In order to illustrate the flexibility offered by the bivariate normal densityppwe derivep(Tt|
Y, %) in closed form (Appendix B) and then compute the bivariate density on alimensional grid
(Figure 3).

For the purpose of specifying a prior, we seek hyperparamggers, Ao, andvg that induce a
diffuse bivariate distribution ovar. This can be achieved using

-1
10
“0:(0,0)T7K0:17/\0:(0 l) , Vo=>5.

2.3.2 MODEL INVERSION

In contrast to the twofold beta-binomial model discussed in the previou®sgethe bivariate
normal-binomial model makes it difficult to sample from the posterior densities model pa-
rameters using a Metropolis implementation. In order to sample frgn | ki, ki), we would
have to evaluate the likelihogu(k{, ki, | 1, Z); this would require us to integrate omt andTr,
which is difficult.

A simpler strategy is to design a Gibbs sampler (Geman and Geman, 1984) téraimathe
joint posteriorp(p1m, K, Z | K{-m: K1), from which we can derive samples for the conditional poste-
riors p(pam | K Kim) @ndp(W, Z | K-, Kyy) - IN contrast to a Metropolis scheme, Gibbs sampling
requires only full conditionals, that is, distributions of one latent variabled@ioned on all other
variables in the model (Gelfand and Smith, 1990). Whenever a full conditismot available,
we can sample from it using a Metropolis step. Thus, we combine a Gibbgmkelith inter-
leaved Metropolis steps to sample from the postepi@i.m, 1, £ | k{1, Ki.). See Section 3.3 for an
application.

First, population parameter estimates can be obtained by sampling from theqrastasity
P(KLZ | ki Kim) USING @ Metropolis-Hastings approach. Second, subject-specificaates are
estimated by first sampling from(p; | ki, Ki.,) and then applying a sigmoid transform to obtain
samples from the posterior density over subject-specific balancedaa@sip(@; | Ky, Kym)- Fi-
nally, the predictive densit]z)((Np| ki, Ki-) €an be obtained using an ancestral-sampling step on
the basis ofi” andZ(® followed by a sigmoid transform. As before, we use the obtained samples
in all three cases to compute approximate posterior probability intervals asizenp-values. A

detailed description of this algorithm can be found in Appendix C.

2.4 Bayesian Model Selection

While the twofold beta-binomial model assumes independent class-specifi@aies, the bivariate
normal-binomial model relaxes this assumption and allows for correlationsebetaccuracies.
This raises two questions. First, given a particular data set, which modesisabexplaining
observed classification outcomes? And second, can we combine the twisoodetain posterior
inferences that integrate out uncertainty about which model is best? Bestions can be answered
using the marginal likelihood, or model evidence, that is, the probability afalteegiven the model,
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after integrating out the parameters:

P(im i | M) = [ Pl ki ) P(B | M) B

Here,B serves as a placeholder for all model parameterp& M ) represents its prior distribution
under a given mode¥. Under a flat prior over models, Bayes’ theorem indicates that the model
with the highest evidence has the highest posterior probability given the da

PM | Ky, Kp) O P(K g Ky [ M)

1:m» 1:m>’

In practice, the model evidence is usually replaced by the log model eggehich is monotoni-
cally related but numerically advantageous.

Concerning the first model described in this section, the twofold beta-bihamidel My, the
log model evidence is given by

IN P(K{m, Ky | Mob)
In/p |T[1m T[lm) dT[lm'Hn/p lm‘nl ) (T[Im) dT[l_:m (13)

:In<J|1p(k;r \ nj+)>n;m+ln<up(kj‘|nj‘)>%m (14)

where we have omitted the conditional dependenc#ignin (13) and (14f. The expression can
be approximated by

O \

<5 fan(q | ) +nk 3 an(e |5 ),

=1|=

wherett™

; and n;(r) represent independent samples from the prior distribution over subject-
specific accuracies. They can be obtained using ancestral samplirimgsteom the prior over
a andf, as given in (7).

In the case of the bivariate normal-binomial modi&l,, the model evidence no longer sums
over model partitions as in (13), and so the approximation is derived &iftigr

In P(KS 1y Kiry | M)
= In/ p(ki_;makl_;m ‘ pl:m) P(P1m | Mnb) dp1:m (15)

C

1 m . 1 . _ 2
~In= Bin (k' | o (p\™¥)) Bin (k7 | o (p{"?)), (16)
22, 118 (k[0 (")) Bin (5 | (¢]"))
for which we provide additional details in Appendix C (24). Having comptiednodel evidences,
one can proceed to Bayesian model selection (BMS) by evaluating the Yes Bector,

In BFDb,nb =1In p(k+ klm ’ Mbb) In p(kJr klm ‘ Mnb (17)

1:m’ 1:m>

6. One could also express the model evidence in terms of an expectétiorespect ta(a, B | Mpp).
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representing the evidence in favour of the beta-binomial over the norimatial model. By con-
vention, a log Bayes factor greater than 3 is considered strong evigefas®ur of one model over
another, whereas a log Bayes factor greater than 5 is referred toyastrang evidence (Kass and
Raftery, 1995). The best model can then be used for posterior mtfeseon the mean accuracy in
the population or the predictive accuracy in a new subject from the npwigion.

The second option to make use of the model evidences of competing modejesdamodel
averaging (Cooper and Herskovits, 1992; Madigan and Raftery; M&digan et al., 1996). Under
this view, we do not commit to a particular model but average the predictione haadll of them,
weighted by their respective posteriors. In this way, we obtain a mixtunession for the posterior
of the mean accuracy in the population,

p( ki_m7klm gp }klm’ 1:m» ) p(M‘k:_L‘_m’k_ )

Similarly, we can obtain the posterior predictive distribution of the balancedracy in a new
subject from the same population,

((p’klw 1m %p }klmﬂ 1va) p(M‘kIm7kI:m)'

The computational complexity of the above stochastic approximations is coalsieleand so
it can sometimes be useful to resort to a deterministic approximation insteddaswariational
Bayes (see Discussion). While we do not consider this approach in Hetail it does provide a
helpful perspective on interpreting the model evidence. Specificallymibdel evidence can be
approximated by a variational lower bound, the negative free-engrgyn the case of the beta-
binomial model for instance, this quantity can be written as

F = (Inp(kim | a,B, T[1:m)>q —KL [g(a, B, Ttm) || (0, B, Tlm)] -

The firstterm is the log-likelihood of the data expected under the approxpuoateriomq(a, B, Tt m);
it represents the goodness of fit (or accuracy) of the model. Thedéeon is the Kullback-Leibler
divergence between the approximate posterior and the prior; it repsede complexity of the
model. This complexity term increases with the number of parameters, theisénpeor covari-
ances, and with the deviation of the posterior from the prior that is negdsdd the data. Thus, the
free-energy approximation shows that the model evidence incorper#imde-off between explain-
ing the observed data (i.e., goodness of fit) and remaining consistent wighiou(i.e., simplicity
or negative complexity). In other words, the model evidence encodesnedl a model strikes
the balance between explaining the data and remaining simple (Pitt and Mya0#y,BReal, 2003;
Stephan et al., 2009).

Classical approaches differ from the Bayesian framework presabta in several ways. For
a comparison between classical and Bayesian inference, see Appendix

3. Applications

This section illustrates the practical utility of the Bayesian models discussed prdfious sec-
tion and compares them to inference obtained through classical (fresfystatistics. We begin
by simulating classification outcomes to highlight the key features of Bayesiamlfaffects infer-

ence (Sections 3.1 and 3.2). We then contrast inference on accunéttiesference on balanced
accuracies (Section 3.3). Finally, we illustrate the application of our apprtasynthetic data
(Section 3.4) as well as empirical data obtained from an imaging experimecttd® 3.5).
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3.1 Inference on the Population Mean and the Predictive Accuracy

In a first experiment, we simulated classification outcomes for a group aft§0ds with 100 trials
each. Outcomes were generated using the beta-binomial model with a papuiatim of 0.75 and

a population variance of 0.02 (i.e,~ 6.28 andp ~ 2.09, corresponding to a population standard
deviation of 0.141; Figure 4).

Raw data, that is, the number of correct predictions within each subjechawn in Figure 4a.
Their empirical sample accuracies are shown in Figure 4b, along with thadptouth density of the
population accuracy. Inverting the beta-binomial model, using the MCM€Ceplare of Section 2.1
(Figure 4c), and examining the posterior distribution over the population mezuracy showed
that more than 99.9% of its mass was above 50%, in agreement with the fabethrate population
mean was above chance (Figure 4d).

We also used this simulation to illustrate the differences between a Bayesianeffieets cen-
tral 95% posterior probability interval, a fixed-effects probability interneald a random-effects
confidence interval (Figure 4e). All three schemes arrive at the samdusion with respect to
the population mean being above chance. However, while the randoatsdfiterval (red) is very
similar to the proposed mixed-effects interval (black), the fixed-effedtsval (yellow) displays
too small a variance as it disregards the important between-subjectsilitsriab

We finally considered the predictive posterior distribution over the acguteat would be ob-
served if we were to acquire data from a new subject (Figure 4f). Tdstepor did not allow for the
conclusion that, with a probability larger than 0.95, the accuracy in a nejg@cdukould be above
chance. This result is driven by the large heterogeneity in the populaiauging a dispersed pre-
dictive density. Importantly, the dispersion of the predictive density woatdvanish even in the
limit of an infinite number of subjects. This is in contrast to the dispersion of tséepior over the
population mean, which becomes more and more precise with an increasingtarhdata.

Inference was based on 100000 samples, generated using 8 pdraii.cWe used several
standard approaches to convergence evaluation. In particular,nga&leoed trace plots for visual
inspection of mixing behaviour and convergence to the target distributloresddition, we moni-
tored the average ratio of within-chain variance to between-chain variarigch was bigger than
0.995. In other words, the variances of samples within and between eteii@practically indistin-
guishable. The Metropolis rejection rate was 0.475, thus ensuring aopajgte balance between
exploration (of regions with a lower density) and exploitation (of regions witigher density). Fi-
nally, we assessed the uncertainty inherent in MCMC-based quantitieasilmg Bayes factors by
computing standard deviations across repetitions, which led us to dse 10° samples for each
computation (see Section 3.3). All subsequent applications were basthe same algorithmic
settings.

In frequentist inference, a common way of representing the statistiqgaggies of a test is to es-
timate the probability of rejecting the null hypothesis at a fixed threshold (e0%) Onder different
regimes of ground truth, which leads to the concepp@iver curves Here, we adopted this fre-
guentist perspective to illustrate the properties of Bayesian mixed-eiiféetsnce on classification
performance (Figure 5).

Specifying a true population mean of 0.5 and variance of 0.001 (standsation 0.0316), we
generated classification outcomes, in the same way as above, for a syntbeficof)20 subjects
with 100 trials each. Inverting the beta-binomial model, we inferred whetlegpdipulation mean
was above chance by requiring more than 95% of the posterior probabildy aidahe population

3148



MIXED-EFFECTSINFERENCE ONCLASSIFICATION PERFORMANCE
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Figure 4: Inference on the population mean and the predictive accig¢ylassification outcomes
were generated for 20 subjects using the beta-binomial model. Eachtdalbjgly char-
acterized by the number of correctly classified trials (black) out of angset of 100
trials (grey). (b) Empirical sample accuracies (blue) and their underpyapylation dis-
tribution (green). (c) Inverting the beta-binomial model yields samples thenposterior
distribution over the population parameters, visualized using a nonparaifieteacate
Gaussian kernel) density estimate (contour lines). (d) The posteriot tiwopopulation
mean accuracy, plotted using a kernel density estimator (black), is sipegited around
the true population mean (green). The upper 95% of the probability mashaded
(grey). Because the lower bound of the shaded area is greater thahégopulation
mean can be concluded to be above chance. (e) While the central 95&tiqgrositer-
val (black) and the classical 95% confidence interval (red) look sintiiertwo intervals
are conceptually very different. The fixed-effects interval (oraiigeyerly optimistic as
it disregards between-subjects variability. (f) The posterior predidistibution over
Tt represents the posterior belief of the accuracy expected in a new s(lpek). Its
dispersion reflects irreducible population heterogeneity.

mean to be greater than 0.5, that is, by requiring an infraliminal probabilityssftlegan 5%. We
repeated this process 1000 times and counted how many times the population ascdeemed
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(a) population variance = 0.001 (b) population variance = 0.02  (c) population variance = 0.05
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Figure 5: Inference on the population mean under varying populatiomogeteeity. The figure
shows Bayesian estimates of the frequentist probability of above-cl@aesification
performance, as a function of the true population mean, separatelyderdtiferent level
of population heterogeneity (a,b,c). Each data point is based on 1 000 sims)&ach of
which used 10 000 samples from every subject-specific posterior to nddasion. The
figure shows that, in this setting, frequentist inference basdedtests (red) agrees with
Bayesian inference based on the beta-binomial model (black). By sgrarfixed-effects
approach (orange) offers invalid population inference as it distdsgaetween-subjects
variability; at a true population mean of 0.5, the hypothesis of chancepevirmance
is rejected more frequently than prescribed by the test size. Each dataspalivited in
terms of the fraction of above-chance conclusions and a 95% censtrjgo interval,
based on a Beta model with a flat prior. Points are joined by a sigmoidal fanibiax
was constrained to start at 0 and end at 1, with two remaining degreeedbin. Where
the true population mean exceeds 0.5, the graphs reflect the empiriciéividgre the
inference scheme. Its empirical specificity corresponds to the vertidahdis between
the graphs and 1 at the point where the population mean is 0.5. Insets shdisttibu-
tion of the true underlying population accuracy (green) for a populaticemnaecuracy
of 0.75.

greater than chance. We then varied the true population mean and plotteakctienfof decisions
for an above-chance classifier as a function of population mean (FigiiréAt a population mean
of 0.5, the vertical distance between the data points and 1 represents tinearapecificity of the
test (which was designed to be-In = 0.95). At population means above 0.5, the data points show
the empirical sensitivity of the test, which grows rapidly with increasing pdjmuianean. In this
setting, the inferences that one would obtain by a frequentest (red) are in excellent agreement
with those afforded by the proposed beta-binomial model (black). Sieqeajbulation variance was
chosen to be very low in this initial simulation, the inferences afforded byealfeffects analysis
(yellow) prove very similar as well; but this changes drastically when irsimgathe population
variance to more realistic levels, as described below.

One important issue in empirical studies is the heterogeneity of the populatienstutfied
the effects of population variance by repeating the above simulations widnatitfvariances (Fig-
ures 5b,c). As expected, an increase in population variance redtatesfical sensitivity. For
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(a) data (b) population inference (c) population-mean intervals
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Figure 6: Inadequate inferences provided by fixed-effects ardbrareffects models. (a) The sim-
ulation underlying this figure represents the case of a small heterosicegtasip with
varying numbers of trials across subjects. Classification outcomes weeeaped in the
same way as in the simulation underlying Figure 5a. (b) The (mixed-effects@nor
density of the population mean (black) provides a good estimate of grouhdgneen).
(c) A central 95% posterior probability interval, based on the density shiob), com-
fortably includes ground truth. By contrast, a fixed-effects intervedri{ge) is overop-
timistic as it disregards between-subjects variability. The correspondmpmaeffects
confidence interval (red) is similar to the mixed-effects interval but laskeaetry, thus
inappropriately including accuracies above 100% (red dashed line).

example, given a fairly homogeneous population with a true population mearsag of 60% and
a variance of 0.001 (standard deviation 0.0316; Figure 5a), we catipcorrectly infer above-
chance performance in more than 99.99% of all cases. By contrash, @iwgre heterogeneous
population with a variance of 0.05 (standard deviativ0.22), the fraction of correct conclusions
drops to 61%; in all other cases we would fail to recognize that the classdieperforming better
than chance.

The above simulations show that a fixed-effects analysis (yellow) becamiesalid procedure
to infer on the population mean when the population variance is non-negligiblaore than the
prescribed 5% of simulations with a true population mean of 0.5, the proceduuded that
the population mean was above chance. This is because a fixed-effabtsiayields too small
variances on the population mean and therefore too easily makes ataneeaonclusions.

All above simulations were based on a group of 20 subjects with 100 tridis €ais emulated
a setting as it frequently occurs in practice, for example, in neuroimagingadatgses. We re-
peated the same analysis as above on a sample data set from a second sisettatg (Figure 6).
This setting was designed to represent the example of a small heterogeggreap with varying
numbers of trials across subjects. Specifically, we generated data dfibjeets, half of which had
20 trials, and half of which had only 5 trials. Classification outcomes werergad using the beta-
binomial model with a population mean of 0.85 and a population variance of €cd&¢§ponding
to a population standard deviation of 0.14; Figure 6a).

The example shows that the proposed beta-binomial model yields a posiengity with the
necessary asymmetry; it comfortably includes the true population mean €Fagir By contrast,
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the fixed-effects probability interval (based on a Beta density) is overynistic. Finally, the
random-effects confidence interval is similar to the mixed-effects intervialaioks the necessary
asymmetry, including accuracies above 100% (Figure 6c).

3.2 Inference on Subject-Specific Accuracies

In the Bayesian models of this paper, classification accuracies of indhgdbjects are represented
by a set of latent variables, ..., . A consequence of hierarchical Bayesian inference is that
such subject-specific variables are informed by data from the entirgp grigfiectively, they are
shrunkto the group mean, where the amount of shrinkage depends on the sfgeifie posterior
uncertainty.

To illustrate this, we generated synthetic classification outcomes and compbjedtsspecific
posterior inferences (Figure 7). This simulation was based on 45 subjestdl; 40 subjects were
characterized by a relatively moderate number of trials-(20) while 5 subjects had even fewer
trials (n=>5). The population accuracy had a mean of 0.8 and a variance of 0.0dgstiedeviation
0.1). Using this data set, we computed subject-specific central 95% pogteimability intervals
and sorted them in ascending order by subject-specific sample ac¢kirguse 7a). The plot shows
that, in each subject, the posterior mode (black) represents a compronwsebdhe observed
sample accuracy (blue) and the population mean (0.8). This compromise ipravides a better
estimate of ground truth (green) than sample accuracies by themselvegffébisiemonstrates a
key difference between the two quantities: subject-specific posteriisfarmed by data from the
entire group, whereas sample accuracies are based on the data firfivielual subject.

Another way of demonstrating the shrinkage effect is by illustrating theitram$rom ground
truth to sample accuracies (with its increase in dispersion) and from sangpleeies to posterior
means (with its decrease in dispersion). This shows how the high variabiligmple accuracies
is reduced, informed by what has been learned about the populatiam€Fig). Notably, because
the amount of shrinking depends on each subject’s posterior uncerthiatghrinking effect may
modify the order of subjects, as indicated by crossing lines. Here, ssbjib only 5 trials were
shrunk more than subjects with 20 trials.

In a next step, we examined power curves, systematically changing thpdpudation accu-
racy and repeating the above simulation 1000 times (Figure 7c¢). Within a girardation, we
concluded that a subject-specific accuracy was above chance if nare989% of its posterior
probability mass was above 0.5. We binned subjects across all simulationsanfusgpf similar
accuracies and plotted the fraction of above-chance decisions atj@isstrue accuracies, contrast-
ing the Bayesian model with a conventiondkst. As shown in Figure 7¢;tests falsely detected
above-chance subject-specific accuracies in about 5% of the tasggseement with the intended
test size. By contrast, our Bayesian scheme was considerably moitveemsd detected above-
chance accuracy in subjects whose true accuracy was within a smalbbimda®.5. This reflected
the fact that the Bayesian procedure incorporated what had beardieavout the population when
deciding on individual subjects. That is, a population mean well aboveceh@ere: 0.8) made it
more likely that individual subjects performed above chance as well,iavie presence of a low
sample accuracy.

In addition to enabling decisions that take into account information aboutrthggthe poste-
rior distributions of subject-specific accuracies also yield more precis¢ @stimates. To illustrate
this, we simulated 1 000 data sets in the same way as above. Within each simulatmympared
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(a) subject-specific inference (b) subject-specific inference (c) power curves (d) risk functions
C 1 o 1 —
'7'\: ﬁ ML estimator
ll 0.8 208 =
T, § 5
3 0. .o 0.6 % € 0.6 ) James-Stein
g S = 3 estimator
Q 3 < =
g 0. 0.4 \©/ i 0.4 beta-binomial [ \
ground truth \_stbjects 2z model 3 Bayes estimator
0.2P  sample accuracies 0.2 with very 2 0.2 g?gg/tentmnal <
posterior interval (bb) 5 g
0 o
0 20 40 ground  sample posterior 8.5 0.75 1 8.5 0.75
subjects (sorted) truth  accuracies mean (bb)  true subject-specific accuracy true population mean

Figure 7: Inference on subject-specific accuracies. (a) Classificatittomes were generated for
a synthetic heterogeneous group of 45 subjects (40 subjects with 20 agalssesubjects
with 5 trials each). All data were generated using the beta-binomial modeligiamn
mean 0.8, standard deviation 0.1). The figure shows subject-speciferiposneans
and central 95% posterior probability intervals (black), sample accuréoiee if based
on 20 trials, red if based on 5 trials), and true subject-specific accarégieen) as a
function of subject index, sorted in ascending order by sample agcukbenever a
subject’s sample accuracy is very low or very high in relation to the remaimimgpgthe
Bayesian posterior interval is shrunk to the population. (b) Another viiaysaalizing
the shrinking effect is to contrast the increase in dispersion (as we mawedground
truth to sample accuracies) with the decrease in dispersion (as we movednophe ac-
curacies to posterior means) enforced by the hierarchical model. 8igiokanges the
order of subjects (when sorted by posterior mean as opposed to by sacoptacy) as
the amount of shrinking depends on the subject-specific (first-levet@posuncertainty.
Subjects with just 5 trials (red) are shrunk more than subjects with 20 trials)(b{a)
Based on 1000 simulations, the plot shows the fraction of simulations in whiab-a s
ject’s accuracy was concluded to be above chance, based on dd8gyesterior interval
(black) or a frequentidi-test (red). In contrast to classical inference, the Bayesian pro-
cedure incorporates a desirable shift towards the population in makingjaiecabout
individual group members. (d) Across the same 1000 simulations, a Batiegtor,
based on the posterior means of subject-specific accuracies (blask}uperior to both
a classical ML estimator (blue) and a James-Stein estimator (red).

three different ways of obtaining an estimator for each subject’s acgu(g a Bayes estimator
(posterior mean of the subject-specific accuracy); (i) a maximum-likelihobta&®r (sample ac-
curacy); and (iii) a James-Stein estimator, with a similar shrinkage effecteaBajes estimator
but less explicit distributional assumptions (Figure 7d). For each estimeaarpmputed the mean
squared error (or risk) across all subjects, averaged acrosmalbsions. We then repeated this
process for different population means. We found that the James-Stemator outperformed the
ML estimator for low accuracies. However, both estimators were dominatécehyinferior to) the
Bayes estimator which provided the lowest risk throughout.

It is important to keep in mind that the above simulations are based on synthesdicktion
outcomes which fulfil the assumptions of the normal-binomial model by desigrariicular the
assumption of logit-normally distributed subject-specific accuracies andsghuengtion of condi-
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tional independence given the population parameters. For empiricaltdass assumptions may
not always hold and so posterior inferences, including the shrinktiget,emay be suboptimal.
This highlights the importance of model checking when using the models peesarthis paper in
practical applications.

3.3 Inference on the Balanced Accuracy

The balanced accuracy is a more useful performance measure thactinecg, especially when a
classifier was trained on an imbalanced test set and may thus exhibit b@slehto illustrate the

relative utility of these two measures in our Bayesian models, we simulated an nmoédldata set,

composed of 20 subjects with 100 trials each, where each subject haeklpe™®@ and 90 positive
trials (drawn from a uniform distribution) and between 10 and 30 negttals.

An initial simulation specified a high population accuracy on the positive clads dow accu-
racy on the negative class, with equal variance in both (Figure 8a,bseTdccuracies were chosen
such that the classifier would perform at chance on a hypotheticaldealaaample. This allowed
us to mimic the commonly observed situation in which a classifier takes advantdgeimbalance
in the data and preferably predicts the majority class. We independentlyaduéree competing
models: (i) the beta-binomial model to infer on the classification accuraaythen (ii) twofold
beta-binomial and (iii) bivariate normal-binomial models to infer on the balaacedracy. As ex-
pected, the beta-binomial model falsely suggested high evidence fag-ghance classification. In
contrast, the twofold beta-binomial and normal-binomial models correctly itetidhe absence of
a statistical relation between data and class labels (Figure 8c).

These characteristics were confirmed across a large set of simulategpécted, inference on
the accuracy falsely concluded above-chance performancejagpieche presence of a significant
degree of class imbalance. By contrast, inference on the balancedagcdid not incorrectly reject
the hypothesis of the classifier operating at the level of chance moretbfiarprescribed by the
test size (Figure 8d).

We compared the two models for inference on the balanced accuracy ms meBayesian
model comparison. Using $&amples with Equation (17), we obtained a log Bayes factor of 33.2
in favour of the twofold beta-binomial model (i.e., under a flat prior over emdhe posterior be-
lief in the beta-binomial model is greater than 99.99%). This result repiegery strong evidence
(Kass and Raftery, 1995) that the beta-binomial model provided a befianation of the synthetic
classification outcomes than the normal-binomial model. This finding is plausilzie soncorrela-
tion structure among class-specific accuracies was imposed in the simulatisnntthis case, the
beta-binomial model is a better model than the more complex hormal-binomial model.

To assess the sampling-induced uncertainty about this result, we reff@atednputation of the
log Bayes factor 100 times. We obtained a sample standard deviation of 8.8, tha uncertainty
was small in relation to the overall strength of evidence. By comparisonn whiag only 16
samples instead of $0the standard deviation increased to 25.5. We usédsafples for all
subsequent analyses.

We repeated the main analysis above 1 000 times and plotted the fraction efeiswe con-
clusions against the degree of class imbalance. Note that the resultikgi€uat a power curve in
the traditional sense, as its independent variable is not the true (balawcedacy but the accuracy
on positive trials, that is, an indicator of the degree of class imbalancereFglushows that the
simple beta-binomial model provides progressively misleading conclusionghagt imbalance at
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Figure 8: Inference on the balanced accuracy. (a) The simulatiorrlyimgdethis figure mimics an
imbalanced data set which has led the classification algorithm to acquire a Eaastim
of the majority class. The plot shows, for each subject, the number afatyrclassified
positive (green) and negative (red) trials, as well as the respectalentamber of trials
(grey). (b) Visualizing sample accuracies separately for the two clagees rise to a
two-dimensional plot, in which the true positive rate on the y-axis and the trgative
rate on the x-axis represent the accuracies on positive and negétlse reespectively.
The underlying true population distribution is represented by a bivariatssgn kernel
density estimate (contour lines). The plot shows that the population agdsraigh on
positive trials and low on negative trials. (c) Central 95% posterior fntibaintervals
based on three models: the simple beta-binomial model for inference ongh&fpon
accuracy; and the twofold beta-binomial model as well as the bivariateatdsinomial
model for inference on the balanced accuracy. The true mean balaocedhcy in the
population is at chance (green). It is accurately estimated by models igferrithe bal-
anced accuracy (red, blue). Bayesian model selection yielded vengstvidence (Kass
and Raftery, 1995) in favour of the normal-binomial model (posterior hpdability
=97.7%). (d) Probability of falsely detecting above-chance performarsing different
inference schemes. The true balanced accuracy is 0.5. The x-aréseafs the degree
of class imbalance.

the group level (cf. Figure 5). In contrast, both schemes for inferemcthe balanced accuracy
made above-chance conclusions in less than 5% of the simulations, as thbsritheir test size.

All models considered in this paper are based on diffuse priors designaeth a way that
posterior inferences are clearly dominated by the data. However, onéasigto what extent such
inferences depend on the exact form of the prior. To examine this depea, we carried out a
sensitivity analysis in which we considered the infraliminal probability of thetgx@or population
mean as a function of prior moments (Figure 9). We found that infereneeseaextremely robust, in
the sense that the influence of the prior moments on the resulting postersdietwas negligible in
relation to the variance resulting from the fact that we are using a (stichesproximate inference
method for model inversion. In particular, varying the constant (originallyin Equation (7)
for the beta-binomial prior left the infraliminal probability of the posterior @ecy unaffected
(Figure 9a,b). Similarly, varying, Ko, or vo in the normal-binomial model had practically no
influence on the infraliminal probability of the posterior balanced accuiéigure 9c¢,d,e).
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Figure 9: Sensitivity analysis. This figure illustrates the dependencestépar inferences on the
exact form of the priors proposed in this paper. Each graph showsfthéminal prob-
ability of the population mean accuracy (i.e., the posterior probability mass eEw
as a function of a particular parameter of the prior distribution used for hiogersion.
(a,b) Same data sets as shown those shown in Figures 4a and 6a, but ligthtla s
lower population mean of 0.7. Inferences on the population accuradyased on the
beta-binomial model. (c,d,e) Same data set as shown in Figure 8a. Irdsrendhe
population balanced accuracy are based on the bivariate normal-binoodal.

3.4 Application to Synthetic Data

All experiments described so far were based on classification outcommgseshfrom the beta-
binomial or normal-binomial model. This ensured, by construction, that tieddisonal assump-
tions underlying the models were fulfilled. To illustrate the generic applicabilityunfapproach
when its assumptions are not satisfied by construction, we applied modetixkxnt-effects infer-
ence to classification outcomes obtained on synthetic data features farmajrd0 subjects with
100 trials each (Figure 10). In addition to probing the models’ robustngbs®gard to distribu-
tional assumptions, this allows one to examine what correlations betweerspksfic accuracies
may be observed in practice.

Synthetic data were generated using a two-level sampling approach fleate the hierar-
chical nature of group studies. We specified a population distribution, lednspbject-specific
means and variances from it, and then used these to generate trial-sf@atifie vectors. In a
first simulation (Figure 10, top row), we generated 50 positive trials antkg@tive trials for each
individual subjectj by drawing one-dimensional feature vectors from two normal distributions
AL(Xij | ujﬂoj) andA((xj | 4j ,0j), respectively. The moments of these subject-specific distribu-
tions, in turn, were drawn from a population distribution, usﬂs(gjuj+ | %,%) andy; = —uj+ for
the means, and Ga(o; | 10, 1—10) for the variance. The normal distribution and the inverse Gamma
distribution are conjugate priors for the mean and variance of a univardaeal distribution and,
thus, represent natural choices for the population distribution.

To obtain classification outcomes, separately for each subject, we traidettsted a linear
support vector machine (SVM), as implemented by Chang and Lin (20%i)g b-fold cross-
validation. Classification outcomes are shown in Figure 10a, in which the marmbeorrectly
classified trials are illustrated separately for the two classes and for gbjeltts The same data are
represented in terms of sample accuracies in Figure 10b (blue dots). Tratkkuground truth, we
repeated the above procedure (of generating synthetic data and gpgolyBivM) 1 000 times and
added a contour plot of the resulting distribution of sample accuracies imthe gure. This dis-
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Figure 10: Application to synthetic data. (a) Classification outcomes obtanegiying a lin-
ear support vector machine to synthetic data, using 5-fold cross-vahddbp Sample
accuracies on positive (TPR) and negative classes (TNR) show siiteseaorrelation
between class-specific accuracies (blue). The underlying populatioibdi®n is rep-
resented by a bivariate Gaussian kernel density estimate (contour (icleSgntral 95%
posterior probability intervals, resulting from inversion of the beta-binomiadlel for
inference on the population mean accuracy as well as the twofold betaribinmodel
(bb) and the bivariate normal-binomial modebj for inference on the population mean
balanced accuracy (all black). A frequentist 95% confidence intéea) is shown for
comparison. Bayesian model selection yielded very strong evidence éfasRaftery,
1995) in favour of the normal-binomial model (posterior model probability 99%).
(d) A second simulation was based on a synthetic heterogeneous groupawiihg
numbers of trials. (e) In this case, the classifier acquires a strong biagauarfof the
majority class. (f) As a result, inference on the accuracy is misleading;alamded
accuracy is a much better performance indicator, whether based ontthbibemial
(bb) or normal-binomial modelnb).

tribution was symmetric with regard to class-specific accuracies while theseaates themselves
were strongly positively correlated, as one would expect from a lineasifier tested on perfectly
balanced data sets.
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We applied all three models discussed in this paper for inference: théinetaial model for
inference on the accuracy (Section 2.1), and the twofold beta-binondal@mal-binomial model
for inference on the balanced accuracy (Sections 2.2 and 2.3). Ce@b¥aposterior probability
intervals about the population mean are shown in Figure 10c, along witlyaeinést confidence
interval of the population mean accuracy. All four approaches prdviecise intervals around
the true population mean. Comparing the two competing models for inferencee drakéinced
accuracy, we obtained a log Bayes factor of 22.1 in favour of the twdjetd-binomial model
(posterior model probability- 99.99%; standard deviation of log Bayes factor across computations
~5.1), representing very strong evidence (Kass and Raftery, 1998hthanodel provided a better
explanation of the data (i.e., a better balance between fit and complexity) thhivainiate normal-
binomial model. This finding makes sense in light of the posterior covariantrexrabthe normal-
binomial model (cf. Figure 2b). Its off-diagonal elements (accountinghfe potential dependency
between class-specific accuracies) did not only have a very small ragas ¢,; = 0.19); they
were also associated with considerable posterior uncertainty (95% lerédirval[—0.01,0.44]).

In other words, the small additional fit provided by the off-diagonal el@s@as outweighed by
the additional model complexity incurred.

We repeated the above analysis with a subtle but important modification: irsfteathg per-
fectly balanced data (50 positive and 50 negative trials), we created intealaynthetic data using
70 positive and 30 negative trials per subject. All other details of the daabmained unchanged
(Figure 10, bottom row). We observed that, as expected, the class imbakmed the classifier to
acquire a bias in favour of the majority class. This can be seen from thelaagification outcomes
in which many more positive trials (green) than negative trials (red) wessitiled correctly, rela-
tive to their respective prevalence in the data (grey; Figure 10d). itlsedreflected accordingly by
the estimated bivariate density of class-specific classification accurimoidsich the majority class
consistently performs well whereas the accuracy on the minority class wrimgly (Figure 10e).
In this setting, we found that both the twofold beta-binomial model and the ridyimamial model
provided excellent estimates of the true balanced accuracy (FiguréogiBayes factor in favour
of the beta-binomial model: 47.3; standard deviation 11.3). In stark contiisg the single beta-
binomial model or a conventional mean of sample accuracies to infer on thégtion accuracy
(as opposed to balanced accuracy) resulted in estimates that were aptimtistic and therefore
misleading.

3.5 Application to Empirical Data

In order to illustrate the practical application of the approaches discus#ieid paper, we analysed
a neuroimaging data set, obtained by functional magnetic resonance imiégiRig. (n neuroimag-
ing, classifiers are often used as part of decoding models designedita ipérceptual or cognitive
state from brain activity, typically on a trial-by-trial basis, but acrossocaigrof subjects. The inter-
pretation of the ensuing results critically relies on the validity of the models usadfésence on
classification performance.

Here, we analysed data from an fMRI experiment involving 16 voluntdesgyned to study the
cognitive processes underlying decision making. During the experimésjects had to choose, on
each trial, between two alternative options. Choices were indicated by lprges (left/right index
finger). Over the course of the experiment, subjects learned, by tdarar, the reward probabil-
ities of these two options. Details on experimental design, data acquisitioprepibcessing can
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Figure 11: Application to empirical data. (a) Classification outcomes obtainagfiying a linear
SVM to trial-wise fMRI data from a decision-making task. (b) Replotting classiibn
outcomes in terms of sample accuracies on positive (TPR) and negative TR
reveals the positive correlation between class-specific accuracieh tfis data set,
when inferring on the balanced accuracy, the bivariate normal-binomidehias a
higher evidence (marginal likelihood) than the twofold beta-binomial modgkrtimg
the former model, which captures potential dependencies between ptasiesaccura-
cies, yields a posterior distribution over the population mean balancedsagdiniack)
which shows that the classifier is performing above chance. (d) Thesauel can be
used to obtain subject-specific posterior inferences. The plot cordeamsfde accuracies
(blue) with central 95% posterior probability intervals (black), which awmidrfitting
by shrinking to the population mean.

be found elsewhere (Behrens et al., 2007). Here, we predictedtfreiMRI data, on a trial-by-
trial basis, which option had been chosen. Because choices weretéutmabutton presses, we
expected highly discriminative activity in the primary motor cortex.

Separately for each subject, a general linear model (Friston et al., #@85)sed to create a set
of parameter images representing trial-specific estimates of evoked btaitydo each volume
element. These images were used for subsequent classification. Wd adinear support vector
machine (SVM) using 5-fold cross-validation. Comparing predicted to hchaces resulted in
120 classification outcomes for each of the 16 subjects. These data seetréon inference on the
classification accuracy using the beta-binomial model (Figure 11).

As can be seen from raw classification outcomes, class-specific amsusgemed to be posi-
tively correlated (Figures 11a,b), in a similar way as for the synthetic datsidered above. Thus,
we used both the twofold beta-binomial model and the bivariate normal-binomoidél for infer-
ence. Bayesian model comparison yielded a log Bayes factor of 12.5aarfaf’the beta-binomial
model (standard deviation across computatier&69), suggesting that the additional complexity
of the normal-binomial model may not have balanced its higher flexibility in exipligithe correla-
tions between class-specific accuracies. Using the beta-binomial moddki@nce on the popula-
tion mean balanced accuracy, we obtained very strong evidence (infralipnagbability p < 0.001)
that the classifier was operating above chance (Figure 11c).

Inference on subject-specific accuracies yielded fairly precise narstetervals (Figure 11d).
The shrinkage effect in these subject-specific accuracies was sattadh the average absolute
difference between sample accuracies and posterior means amounte@ fmefc8ntage points.
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Even the biggest observed shift among all subjects was no more thane3d@hage points (from
a sample accuracy of 99.2% down to a posterior mean of 96.2%). This minoctiofshrinkage is
expected given the relatively small number of subjects (16) and the edlaliirge number of trials
per subject (120).

4. Discussion

Canonical classification algorithms are frequently used on multilevel orrblgcally structured
data sets, where a classifier is trained and tested for each subject witioimpa his paper showed
how the evaluation of classification performance in this setting may benefit fnixed-effects
models that explicitly capture the hierarchical structure of the data. Weniaeyghe following
discussion around the three principal features of this approach.

4.1 Replacing Fixed-Effects by Mixed-Effects Models

The primary contribution of this paper is the introduction and analysis ofasavedels for Bayesian
mixed-effects inference for group-level classification studies. Taucapghe two key sources of
variation in hierarchical data sets, we simultaneously account for fiffedt® (within-subjects)
and random-effects (across-subjects) variance components. Thidegarts from previous mod-
els which are widely used for classification studies but ignore within- or é@tvsubjects vari-
ability. Fixed-effects models make inappropriate assumptions and yieldamf&tent inference.
Conversely, random-effects models treat subject-specific sampleaatzsias observed, rather than
inferred, and thus omit uncertainty associated with such sample accuracies

The mixed-effects models considered in this paper ensure that knovemdimpcies between
inferences on subject-specific accuracies are accommodated within arallyteonsistent repre-
sentation of the data. Specifically, the posterior distribution of the accwfagye subject is par-
tially influenced by the data from all other subjects, correctly weighted by rbgpective posterior
precisions (see Section 3.2). Thus, the available group data are expitedstrain individual
inference appropriately. Non-hierarchical models, by contrast, eskgounder-parameterized or
over-parameterized. For example, pooling classification outcomes atbgxts and modelling
them as being drawn from a single distribution corresponds to an uadampterized model whose
single parameter (i.e., the latent accuracy) is insufficient to explain anyatam variability. Con-
versely, replicating the single-subject model in Equations (1)—(3) fcin eabject leads to an over-
parameterized model withnZparameters that is likely to overfit the data and generalize poorly.
Hierarchical models overcome this problem in a natural way: they regeldrizinversion problem
by incorporating the structural dependencies that are assumed todgloeabserved data.

An important aspect to keep in mind is that shrinkage is a posterior inferandeas such is
conditional on the model. A corollary of this is that shrinkage is suboptimahwhe hierarchical
model structure represents an unreasonable assumption. This highligimspibrtance of model
checking as an integral part of statistical inference. In particulagarebers applying the models
proposed in this paper are advised to check whether the hierarchigztlisér of the models can be
defended on substantive grounds. For example, in an experimere eaehn subject was either as-
signed to a treatment group or a control group, it may no longer be justifiegiaotheir accuracies
as conditionally independent and identically distributed given a single vetpmpulation parame-
ters; instead, it might be more appropriate to analyse the two subgrowgrssy (or augment the
present models by a third level).
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In those situations where a hierarchical structure is justified, we arewaktaf alternatives
that are superior to shrinkage. One possibility is to neepoolingof information across sub-
jects, leading to a set of isolated subject-specific sample accuracies. Apo#iséility iscomplete
pooling leading to a single group mean accuracy. Between these two extremes leighted esti-
mates provided by a hierarchical model. Its shrinkage effect enswaeisthrmation from different
sources is weighted correctly and incorporated into the posterior defigiich model parameter.

Shrinkage is not a consequence of the Bayesian perspective adoptedpaper. It is a funda-
mental aspect of statistical dependencies in hierarchical structurels hdsdeen known for more
than a century, dating back to work as early as Galton’s law of ‘regnedsiwards mediocrity’
(Galton, 1886). It is perfectly possible to obtain shrinkage throughickdaference where it has
undergone considerable scrutiny; one of the best-known exampleslarties-Stein estimator (Ap-
pendix E) whose beneficial effect on estimation precision has long leeegmized in frequentist
statistics. For early contributions to the extensive literature on shrinkéggtefsee Stein (1956),
James and Stein (1961), and Efron and Morris (1971, 1972). Fomatyggplications in other fields
of science, see the many examples described by Gelman et al. (2003).

The hierarchical models presented in this paper are motivated by twodesigins that distin-
guish between inference at the subject level and inference at thp lgnael. However, it should be
noted that these models can easily be extended to accommodate multi-level Stadiesample,
in order to model classification performance in different task conditioria different sessions,
one could introduce separate latent accuranfes[tj’,..., all of which are drawn from a common
subject-specific accuragy. In this way, one would explicitly model task- or session-specific accu-
racies to be conditionally independent from one another given anlbsebgect-specific effectr;,
and conditionally independent from other subjects given the populati@mgders. This example
shows that additional relationships between portions of the acquiredatateematurally expressed
in a hierarchical model to appropriately constrain inferences.

Mixed-effects models are not only useful whewaluatinga classifier but also whefesigning
it. For instance, Schelldorfer et al. (2011) proposed a linear mixeatsfinodel for classification
that accounts for different sources of variation in the data. The madebben shown to improve
classification performance in the domain of brain-computing interface$ @ta., 2011).

4.2 Replacing Frequentist by Bayesian Inference

The second feature of our approach is to provide Bayesian alternitditiee frequentist procedures
that have been dominating classification group studies so far. Althougé twesschools share
commonalities, there are primarily deep conceptual differences. Frésfugpproaches consider
the distribution of an estimator as a function of the unknown true parameter aatlview proba-
bilities as long-term frequencies; estimation yields point estimates and cordid#ervals, while
inference takes the form of statements on the probability of estimator valdes arnull hypothe-
sis.” Bayesian methods, by contrast, consider the subjective belief td@parameter, before and
after having observed actual data, drawing on probability theory to optimgabytify inferential
uncertainty.

An additional aspect of Bayesian approaches is that one can evaiffiaterd models by com-
paring their respective model evidences. This corresponds to ici@@mout model structure as
defined by the model’s priors. For example, in Section 2.4 we showed hawatltea priori as-
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sumptions about the population covariance of class-specific accucacids evaluated, relative to
the priors of the models, using Bayesian model selection.

Bayesian inference in hierarchical models is typically analytically intractatitéch is why
we resort to approximate inference, for example by using stochastioxapmtion schemes based
on MCMC methods. While computationally less efficient than deterministic appréxins(e.g.,
variational Bayes, VB), these are easy to implement, avoid additional distrlallassumptions,
and are asymptotically exact. This paper exclusively relied on MCMC foremiogtersion. In
future work, we will also provide VB algorithms for inverting models of thetgwesented in this
paper (see below).

It is worth noting that classical inference does not necessarily hawstoree the form currently
prevalent in the evaluation of hierarchical classification studies. Fangbea as noted by one
of our reviewers, the-test that is presently used by the large majority of classification analyses
could be replaced by a classical mixed-effects model. This would requirehings. Firstly,
the definition of a decision statistic, for example, the fraction of correctlysiflad trials, pooled
across subjects, or more simply, a hierarchical model such as the betaiéimodel, but estimated
using maximum-likelihood estimation (for an example using logistic regressiomigea, 2008).
Secondly, an inference scheme: under the null hypothesis that thdietaggerform at chance, the
number of correctly/incorrectly classified trials can be swapped acobgscts; this would provide
a permutation mechanism to test the significance of the decision statistic.

An advantage of the above frequentist scheme would be that it no loregeree an assumption
common to all other approaches considered in this paper: the assumptitnethaise classifica-
tion outcomesy; are conditionally independent and identically distributed (i.i.d.) given a stibjec
specific accuracyt This is typically justified by assuming that, in a classification analysis, test
observations are i.i.d. themselves, conditional on the parameters of theplateess that generated
the data. The situation is less clear in a cross-validation setting, where, sépethking, classifi-
cation outcomes are no longer independent of one another (Kohai, N&enberg-Bolin et al.,
2006; Gustafsson et al., 2010). Because violations of i.i.d. assumptiahsdeanservative in-
ference when controlling false positive rates, the i.i.d. assumption hasafjgrmeot been a major
concern in the literature; however, it remains a relevant topic, and fursearch into the ensuing
statistical bias and its adequate correction is required. In the presest papused 5-fold cross-
validation. If trial-by-trial dependence is an issue, then one possibility isdort to a single-split
(or hold-out) scheme, by training on one half of the data, and testing oritlike(see Breiman and
Spector, 1992, for details).

4.3 Replacing the Accuracy by the Balanced Accuracy

The third feature of our approach is its flexibility with regard to performameasures. While
it is common to compare algorithms with regard to their accuracy, the limitations of thiccme
are well-known. For example, when a classifier is tested on an imbalantedetathe accuracy
may be inflated and lead to false conclusions about the classifier’s parfice. There are different
potential solutions to this problem (Akbani et al., 2004; Chawla et al., 2@Qkoivicz and Stephen,
2002). One can, for example, restore balance by undersampling tleeclass or by oversampling
the small class, or modify the costs of misclassification (Zhang and Lee).2B80&ore generic
safeguard is to replace the accuracy with the balanced accuracgdiafrthe arithmetic mean of
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the class-specific accuracies. Unlike the measure described by Vedéz(2007), the balanced
accuracy is symmetric with respect to the type of cfass.

Notably, the balanced accuracy is not confined to binary classificationdoueasily be gen-
eralized toK classes, by defining the balanced accuracy as the arithmetic meankofcklbs-
specific accuracies. For the twofold beta-binomial model, one could tipdacestt and Tt by
. @, ... %, whereas for the normal-binomial model, the bivariate normal distributioddvou
be replaced by K-dimensional normal distribution.

Using the example of the balanced accuracy, we have described haxchieal models en-
able Bayesian inference on performance measures other than thagcdtuture examples might
include functional measures such as the receiver-operating chiisct@ROC) or the precision-
recall curve (cf. Brodersen et al., 2010b). We also demonstratethratmay be multiple plausible
modelsa priori. In this case, Bayesian model selection can be used to decide betweestiogmp
models. Alternatively, Bayesian model averaging produces predictibichw@ccount for posterior
model uncertainty. This approach can be adopted with any other perfoenmaeasure of intere%t.

The choice of a versatile yet convenient parameterization of the distrilsubortlass-specific
accuraciest” andrt has been a recurring theme in the literature. Whereas early treatmentsiadopte
an empirical Bayes approach (e.g., Albert, 1984; Good, 1956; Griffthkxutchkoff, 1971), the
more recent literature has discussed various fully hierarchical apimeegsee Agresti and Hitch-
cock, 2005, for an overview). For instance, Leonard (1972) gged to replace independent Beta
priors on each element af such as those in (2.2), by independent normal priors on each element
of logit(1). While this is analytically convenient, it requires independence assumptioaktion
to the elements aft This limitation was addressed by Berry and Christensen (1979), whadodace
Dirichlet process prior on the elementsrofA related approach was proposed by Albert and Gupta
(1983), who placed Beta priors on the componentssich that their degree of correlation could be
controlled by a common hyperparameter. As mentioned above, a principjedfwsaluating such
different propositions rests upon Bayesian model comparison (Mac&92; Madigan and York,
1997; Penny et al., 2004), which we illustrate by deciding between alteerframeterizations for
inference on the balanced accuracy.

A similar approach to the one discussed in this article has been suggestdidiyi &t al.
(2012), who carry out inference on the population mean accuracgtoparing two beta-binomial
models: one with a population mean prior at 0.5 (i.e., chance), and one wiifoenuprior on the
interval [0.5,1]. Inference then takes the form of model selection, resulting in a Bagés fand
its conventional interpretation (Kass and Raftery, 1995). Our apprdiffers from the above work
in four ways: (i) in addition to classification accuracy, we consider thenisald accuracy, which
is a more useful performance measure whenever the data are natlydrédanced, and for which
we offer different parameterizations that can be optimized using Bayaside! selection; (ii) we
explicitly frame our approach in terms of fixed-effects (FFX), randofaet$ (RFX), and mixed-
effects (MFX) inference, and we provide the respective graphicditso(iii) we emphasize the use
of uninformative priors on the intervéd, 1] to obtain unbiased posterior estimates, which allows us
to use infraliminal probabilities for inference; (iv) finally, we provide exd®e simulation results

7. If desired, this symmetry assumption can be dropped by introdutasg-specific misclassification costs.

8. It should be noted that, in this context, model selection is carried outktavbigch model best explains observed
classification outcomes. This is different from asking what sort ofeh(ick., classification algorithm) might be best
at classifying the data in the first place.
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that demonstrate the differences between FFX, RFX, and MFX appsashrinkage effects, and
reduced estimation risks.

4.4 Summary of Present Results and Conclusions

To examine the properties of our approach and demonstrate its pracitiabhpity, we reported
several applications of the different models to synthetic and empirical @ataresults illustrated
the characteristic features of our approach: (i) posterior densitiep@ssed to point estimates
of parameters; (ii) the ability to compare alternative (non-nested) modelsth@ii)shrinking-to-
the-population’ effect that regularizes estimates of classification pediace in individual subjects
(Figure 7b); (iv) increased sensitivity (Figure 7¢); (v) more prepmemeter estimates (Figure 7d);
(vi) avoidance of classifier bias for imbalanced data sets using the bdlanceracy (Figure 8).

One practical limitation of our approach lies in the high computational complexauiodurrent
inversion methods. In particular, our MCMC algorithms lack guaranteestatomvergence rates.
Our algorithms also include heuristics regarding the number of burn-in santipdeprecision of the
overdispersed initial distributions and the proposal densities, anddiagahe number of chains
run in parallel. To address these issues, we are currently preparargational Bayesian approach
that may offer computationally highly efficient model inversion.

We hope that the models for Bayesian mixed-effects analyses introducas pagrer will find
widespread use, improving the sensitivity and validity of future classificatiodies at the group
level. To facilitate the use of our approach, an open-source MATLAB implgation of all models
discussed in this paper is available for downloiatd ¢: / / m oss. or g/ sof t war e/ vi ew 407/).
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Appendix A. Inversion of the Beta-Binomial Model

The algorithm is initialized by drawing initial values faf® andp© from an overdispersed starting
distribution. We represent these as

.
09 = (In (gg) In (a(o) +B<O))> .

This coordinate transformation makes sampling more efficient (Gelman et@3). Zubsequently,
on each iteratiom, a new candidatey* is drawn from a symmetric proposal distribution

(4 )
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This candidate sampte* is accepted with probability

min<{ 1 p(kim | a*, ") p(a*, B*)
’ p(kl:m | G(T_1>7 B(T_l)) p(G(T_1)7 B(T_l))

= min{l, exp(i f(a*, B ki) — f(0‘<T_l)a[3(T_1),kj)> }
=1

where (7) and (9) (main text) were used in defining

f(a,B,k):=InBb(k|a,B)+Inp(a,pB).

In order to assess whether the mean classification performance acim¢kedopulation is above
chance, we must evaluate our posterior knowledge about the populatemeterst andp. Specif-

ically, inference oro/(a + ) serves to assess the mean accuracy achieved in the population. For
example, its posterior expectation represents a point estimate that minimizearadsqtror loss
function,

o G(T)
=lgvp|r] ~¢ Saw g

Another informative measure is the posterior probability that the mean clasisifi@ccuracy in the
population does not exceed chance,

o ‘ al®

which we refer to as the (posterior) infraliminal probability of the classifiethe symbol #-}
denotes a count of samples.

When we are interested in the classification accuracies of individualctsbyee wish to infer
on p(ty | ki:m). This expression fully characterizes our posterior uncertainty abettudle classi-
fication accuracy in subjegt Given a pair of samples”, (¥, we can obtain samples from these
posterior distributions simply by drawing from

Beta(rr<T

This can be derived by relating the full conditionglT; | a, 3,1 j+1:m, k1:m) to the closed-form
posterior in (3) (see main text; cf. Gelman et al., 2003).

In order to infer on the performance that may be expected in a new subjectthe same
population, we are interested in the posterior predictive density,

1
C ¢

HMO

O kg, B 4~k )

P(Tt| kam),

in which ftdenotes the classification accuracy in a new subject drawn from the spukagion as
the existing group of subjects with latent accuracigs. ., Ti,.° Unlike the posterior om /(a + B),

9. As noted before, the term ‘posterior predictive density’ is sometimgasvely used for densities over variables that
are unobserved but observable in principle. Here, we use the terifetdaghe posterior density of any unobserved
variable, whether observable in principle (suctkpsr not (such a$).
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the posterior predictive density dnreflects both the mean and the variance of the performance
achieved in the populatiotf.

In order to derive an expression for the posterior predictive distributioclosed form, one
would need to integrate out the population parameteaad3,

p(7t] kum) = /[ Pt @, B) P(ctB | ki) dot 0B,

which is analytically intractable. However, the integral shows that valuedeadrawn from the
posterior predictive density oft using a single ancestral-sampling step. Specifically, within each
iterationt, the current samples” andB(Y can be used to obtain a new samfil€ by drawing
from

Beta(f[(T)

amﬁm)

Once a number of samples frop(ft | k;.m) have been obtained, summarizing posterior inferences
becomes straightforward, for example, by reporting

p(ft< 0.5) ~ #{n'V < 0.5},

which represents the probability that the classifier, when applied to a ngecsdrom the same
population, will not perform better than chance.

Appendix B. Bivariate Normal Prior

In order to illustrate the flexibility offered by the bivariate Normal densityppwe derivep(t| p, )
in closed form and then compute the bivariate density on a two-dimensiadal \3fe begin by
noting that

dj_l

dp

where we have added indices pg and p, to disambiguate between the two densities, and where
o1 denotes the logit transform. The Jacobian is

do _ ( d(p) O >

dp 0  d(p2) )’
in which ¢’ represents the first derivative of the sigmoid transform. From this, @arothe inverse
determinant of the Jacobian as

Pr(TT| 1, Z) = Pp(0™ (1) [ 1. 3)

9

do[*_ 1
do|  o'(p1)0'(p2)’

Thus, the conditional bivariate densipy(1t| W, Z) is given by

1
(071 (m))o’(0- (1))

10. If data were indeed obtained from a new subject (representedniis wirk correct predictions im Trials), then
p(7t| k1:m, N1:m) would be used as a prior to compute the postepiar| k, fi, k1:m, N1:m)-

Pr(Tt| L Z) = N2 (0 (1) | 1 Z) o
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whereo~1(m) := (671(m),071(1R))". When evaluating this density on[@, 1] x [0, 1] grid, the
normalization constant is no longer needed, so that we can use the sinmpiessgan

mp(1- 11T1)(1— ) exp{; (0_1(1'[) - “)T zt (0—1(n) —) } )

where we have used the fact tl{x) = o(x)(1— o(x)). This derivation allows us to illustrate the
degrees of freedom of our family of prior distributions oyeandz.

pT[(T[’ uv Z) D

Appendix C. Inversion of the Bivariate Normal-Binomial Model

The algorithm is initialized by drawing initial values fai®, 3©, andp!”,...,piy’ from overdis-
persed starting distributions. On each iteratieal...c, we then update one variable after another,
by sampling from the full conditional distribution of one variable given therent values of all
others!! We begin by finding a new samplg, Z)(T), which can be implemented in a two-step
procedure (Gelman et al., 2003). We first set

_Ko o M-y
b = Ho+ P

s=31y (pf Y —p"Y) (oY - p(”))T

Am= Ao+ S+ (51— o) (pY) — )

m

wherepl™ V) = 1 5™ o1, to draw

> ~ Inv-Wishart,, (Zm /\r‘nl) :
We then complete the first step by drawing
WO ~ 2z (WY [ b, 0 /)

which we can use to obtain samples from the posterior mean balancedwcasireg

1
U = (0 (O
Next, we update the bivariate variabjes. .., pm. For each subjeqt, we wish to draw from the full

conditional distribution

ki_:mv kI:m? p(lT:?—b pg

p(p}"
—p(p

11. Here, we define one iteration as an update of all latent variablesnatitezly, one might update only one variable (or
a subset of variables) per iteration, chosen randomly or systemata=lbng as each variable is updated periodically.

o, 20) (18)

Gk, 20,
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which we have simplified by omitting all variables that are not part of the Malkanket ofp;
(cf. Figure 2b). Because we cannot sample from this distribution direed\generate a candidate
from a symmetric proxy distribution
w1 (10 !
pj ) 0 1 )

and then construct a Metropolis acceptance test. For this, we note that

a(pj) = N\ (p’f

p<pT kf,k;,u“),z(”)

0B (p7 [k 1Y 2) oo
=Pk | 9} H72) p (o} [W0.2Y) 20
=p (KK | 0f) p(p} WV, )

=p (ki [pj2) p(k |Pi2) p(p}|H7.2) (22)
= Bin (kl+ ‘ o(p]?’l)) Bin (kj* ‘ o(p]ﬂz)) N> (p]‘ ‘ u(r),Z(T)) , (23)

where (19) places our focus on the unnormalized density, (20) usesBaeorem, (21) is based
on the Markov blanket, (22) exploits the conditional independence o$-slpscific outcomets:jr

andk;’, and (23) relies on the model assumptions introduced in (4) and (12) (mx&)n Yée can
use this result to accept the candidate sarpphith probability

min{1,exp(r)},

where

5(p]f kj“,kj’,u“),Z(T))
ﬁ(p}“” ] K/, j—,um,z(r))
= InBin (kj+ ) o(pj-‘yl)> +InBin (kj* ‘ o(p]"z)) +InAL (p]-* ‘ u(T),Z(T))
—InBin (k;r ’ o (p%f[l))) —InBin (kj‘ ‘ o (pgfgl))) —InA (pgrfl) ‘ p(T),Z(U) .

We can now obtain samples from the posterior densities | ki, k;.,) for each subject simply
by sigmoid-transforming the current sample,

T[Er) —g (pgr)) .

Based on this, we can obtain samples from the subject-specific balarueddes by setting

o._ 1/ @
o =5 (m3+m3).

r=In
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Apart from usingu™ and=( to obtain samples from the posterior distributions gqugrwe can
further use the two vectors to draw samples from the posterior predidsirébdtion p(7t.,,, K-
For this we first draw

50 ~ A, (5@) u(r)yzm) :
and then obtain the desired sample using
i) —g <5<r)) :

from which we can obtain samples from the posterior predictive balarmaacy using

0= (R 7).

In all above cases, we can use the obtained samples to compute approxdstatéop probability
intervals or Bayesiap-values.
The approximate expression for the model evidence in (16) can be ab&srfellows:

In p(ki_mv kl ‘m | Mnb) (24)

:In/p (K} K | P1m) A2
:|n<p(k1+m7k m|p1m)>

P1m

In<ﬁ (" K | pj>>
P1m

In< p(k | 0;”) (k| p§2>>>
P1m
1
"c2
1
IS

22

e (ki oY) p (K Iof?)
In

Bin (| o (")) Bin (5 [ o (¢}*))

Appendix D. Comparison to Classical Inference

HMO 'LMO *—:3
O = -:13

In a maximum-likelihood (ML) setting, one typically aims to obtain a point estimatetftine true
accuracy of the classifier under the binomial model.

D.1 Classical Inference for a Single Subject

In the case of a single-subject setting, the ML estimatertfier
T, = argmaxBin(k | T, n) = —

which corresponds to theample accuracgythat is, the number of correctly classified trials divided
by the total number of trials.
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Classical inference in the binomial model proceeds by asking how pleotabobserved value
(or greater values) of the estimator are, assuming that the true aceusaaiychance. This tests the
null hypothesidg : 1= 0.5, yielding ap-value,

p=1- Fgin(k|0.5),

where7gin(k | 0.5) is the cumulative distribution function of the binomial distribution witk- 0.5.
The practical simplicity of maximum likelihood is offset by its conceptual limitatiorsecsi-

cally, using the sample accurakyn to estimate the true accuramyisks overfitting. Furthermore, a

point estimate fortignores both (prior and posterior) uncertainty about classificatiompegnce.

D.2 Classical Inference in a Group Study

In a hierarchical setting, group-level inference frequently proségdapplying a one-sample, one-
tailed t-test to subject-specific sample accuracéfesThis tests the null hypothesis that subject-
specific accuracies are drawn from a distribution with a mean at chareleusing the-statistic

vm

wheremtandGy,_1 are the sample mean and sample standard deviation of subject-specific sample
accuraciesty is the accuracy at chance (e.g., 0.5 for binary classification){gndis Student’s
t-distribution onm— 1 degrees of freedom.

Additionally, it is common practice to indicate the uncertainty about the populatiem wkthe
classification accuracy by reporting the 95% confidence interval

T+ 10025m-1 ¥ c% : (26)
wheretg oosm-1 IS @ quantile from the-distribution. It is worth emphasizing that this confidence
interval has a merely illustrative purpose. This is because a centraldhtamresponds to a two-
tailed test, whereas thetest above is one-tailed. Since it is based on Gaussian assumptions, a
one-tailed confidence interval would include the entire real line up4o Thus, a (two-sided)
confidence-interval test actually has a false positive rate/@f= 0.025. Similarly, under the null
distribution, the 95% confidence interval will lie entirely below 0.5 in 2.5% of thees. In a
classical framework, one would have to call this ‘significant,’ in the sehtiee classifier operating
below chance. However, this is not the hypothesis one would typicallywwaest. Rather, itis more
desirable to formulate a one-tailed test. In a Bayesian setting, this can beaathiequantifying
the (posterior) probability that the true accuracy is above chance.

Fundamentally, the differences between the classical procedure afull Bayesian approach
discussed earlier can best be understood by considering their ties@msumptions. The distribu-
tional assumption underlying both titestatistic in (25) and the confidence interval in (26) is that
the sample mean of the subject-wise accuracies, under the null hypothesisnally distributed,

— o
J/m
12. It should be noted that the present manuscript focuses on tlagseal procedures that are widely used in application
domains such as neuroimaging and brain-machine interfaces. Houtésevorth noting that alternative maximum-
likelihood procedures exist that eschew the normality assumption implicitlasaicat-test (e.g., Dixon, 2008, see
also Discussion).

T—

To
_ ~ 1, 25
Om 1 m—1 ( )
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where the population standard deviatiorhas been estimated by the sample standard deviation
Om_1. The corresponding graphical model is shown in Figure 1d.

This analysis is popular but suffers from two faults that are remediedibBayesian treatment.
(For a classical mixed-effects approach, see Discussion.) Firsteabes are confined to the, 1]
interval, but are modelled by a normal distribution with infinite support. Camesetty, error bars
based on confidence intervals (26) may well include values above FEipa® 6¢ for an example).
By contrast, the Beta distribution used in the Bayesian approach has ihedd@sl] support and
thus represents a more natural candidate distribdfion.

Second, the random-effects group analysis under (27) does rmuwaleldge within-subject es-
timation uncertainty and only provides a summary-statistics approximation to fulldreiffects
inference. More specifically, the model is based on subject-wise sanpleaaesry; as the units
of observation, rather than using the number of correctly classified krialénfer on the accuracy
in each subject. Put differently, the model assumes that subject-wismeaiesuhave all been es-
timated with infinite precision. But the precision is finite, and it varies both with tiraber of
observed trials; and with the sample accuraky/n;. (This can be seen from the expression for the
variance of a Bernoulli variable, which is largest at the centre of itsaippn summary, classifier
performance cannot be observed directly; it must be inferred. Whileléissical model above does
allow for inference on random-effects (between-subjects) variabiligéts not explicitly account
for fixed-effects (within-subject) uncertainty. This uncertainty is onlyetalito account indirectly
by its influence on the variance of the observed sample accuracies.

With regard to subject-specific accuracies, one might be tempted tdyjusek; /n; as indi-
vidual estimates. However, in contrast to Bayesian inference on sudgecific accuracies (see
Section 2.1), individual sample accuracies do not take into account theratod) influence pro-
vided by knowledge about the group (i.e., ‘shrinkage’). An effetgigmilar outcome is found in
classical inference using the James-Stein estimator (James and Stein gB98ppendix E). All of
these conceptual differences can be illustrated best using syntheterguidcal data, as described
in Section 3.

Appendix E. Classical Shrinkage Using the James-Stein Estintar

When inferring on subject-specific accuracigs the beta-binomial model uses data from the en-
tire group to inform inferences in individual subjects. Effectively,jsabspecific posteriors are
‘shrunk’ to the population mean. This is in contrast to using sample accaraeiek;/n; as in-
dividual estimates. In classical inference, a similar shrinkage effectbeaachieved using the
positive-part James-Stein estimator (James and Stein, 1961). Itis given b

Al?n = (1_ E)ﬁl:m‘f‘ Eﬁl:m

(12 6fn<ﬁ1:m>>+

|| — T2

wherefty.m = (Kj/nj)1.mis a vector of sample accuracie?_aim is its sample average, aﬁﬁ] denotes
the population standard deviation. The weighing fagtbalances the influence of the dafg or
a given subject) and the populationit ) on the estimate.

13. A classical approach to obtaining more reasonable confidenceaistevould be to apply a logit transform or a
z-transform to sample accuracies and then compute confidence intertladsspace of log odds arscores.
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