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1 Summary
Our brains solve a multitude of hard tasks posed by our environment, including percep-
tion, causal inference, decision-making and learning. It has been proposed that these
diverse capabilities rest on a few common neuronal operations [4, 62, 32]. This possibil-
ity offers hope for a more unified, parsimonious explanation for atypical brain function
[24, 45].

We propose a novel theoretical, and empirical examination of the common computa-
tions that may underlie these apparently diverse tasks, in both neurotypical and autis-
tic spectrum disorder (ASD) participants. Our experiments will address fundamental
open questions about the connections between multisensory perception, decision-making,
causal inference & learning in the neurotypical brain. To ensure comparability across
these different domains, all of our experimental paradigms are formally derived from a
single learning task which requires subjects to identify useful patterns in simple multisen-
sory sequences. Parallel testing of ASD participants will permit us to reduce any group
differences to a common neuro-computational mechanism.

Our experiments draw in a simple way from the Bayesian brain hypothesis: the notion
that neuronal networks solve diverse problems in a common manner, by encoding and up-
dating beliefs about likely patterns in the environment, based on the available sensory
data. We focus on ASD because faulty pattern recognition and sensory perception are
core symptoms. Our experimental approach will combine established neuroimaging tools
with novel, theoretically-inspired behavioral tasks. Our data analysis will feature simple,
qualitative tests of our hypothesized neuro-computational operations, and their dysfunc-
tion in ASD. These tests will be complemented by quantitative tests, derived from more
nuanced, explicitly neuro-computational and neuro-physiological models.

I have already piloted all the behavioral tasks and gathered and analyzed preliminary
EEG pilots. I am based in the Translational Neuromodeling Unit, which operates at the
intersection between medicine (UZH) and engineering (ETH) and runs its own research
clinic, dedicated to studies of psychiatric patients. This work will benefit from collab-
oration with our resident psychiatrist, Helene Haker Rössler. Ethical approval for our
studies will be fast and uncomplicated because they are not clinical trials.
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2 State of research

2.1 Overview
A pattern is a relationship between the individual components of a whole. Patterns in our
environment help us predict, understand and respond to the world. Real-world patterns
are rarely perfect: they are obscured and corrupted in various ways. For example, on
our second encounter with a stranger, he may have a new beard, obscuring some facial
features. We may nonetheless recognize him, infer he has been too busy to shave and
change our behavior accordingly. The ability to encode and reason about uncertain pat-
terns in our environment is central to cognition: it underpins perception, causal inference,
decision-making and learning.

We focus on the brain’s ability to encode probable patterns because this is central to
success across all domains of cognition. Multisensory perception requires us to predict
likely patterns of sensation, experienced simultaneously at different sensors. Decision-
making requires us to combine the predicted state of the world and the predicted value
of that state: this configuration together determine the expected value of actions. Causal
inference requires us to predict which pattern of causes explain an observed effect. As we
will show, all these tasks can be modeled and solved by a common probabilistic pattern-
representation system.

Perception [60], decision-making [26], causal inference [3] and learning [51] are altered
in ASD – a neurodevelopmental cognitive disorder which prominently features irregular
pattern processing. Notably, ASD sufferers perform differently from neurotypical subjects
on tasks that involve pattern processing. For example, individuals with autism often
outperform neurotypical individuals on tasks which require processing of local features,
and may sometimes underperform on tasks which require global patterns [5, 50]. We
will therefore contrast ASD sufferers with neurotypical individuals across all of these
experiments with the aim of reducing group differences to a common pattern-recognition
mechanism.

2.2 Multisensory learning & decision-making
An often-cited ecological advantage of multisensory neuronal codes is “change detection”,
i.e. enhanced perceptual sensitivity to surprising environmental changes [47, 36, 2, 29].
This enhancement arises because one can pool the unreliable information from each noisy
sensory channel to gain more confidence about reality. Pooling is useful because en-
vironmental changes can produce correlated and therefore partially redundant signals in
different sensory channels. This “congruence” between sensory signals in different channels
is also emphasized in the literature on multisensory learning [56]. In a typical neurophysi-
ology experiment, sensory channels are stimulated both alone and then in conjunction, in
order to identify behaviors and neurons exhibiting multisensory facilitation. For example,
visual and auditory speech cues may be presented individually or jointly, to assess any
effect on speech comprehension. A typical observation is that weak or noisy unisensory
stimuli can, when presented at the same time, pool superadditively to enhance detection.

Despite their fundamental importance to our understanding of perception, such paradigms
do not provide a strong test for the role of multisensory processes in change detection.
First, such detection tasks do not strictly require multisensory pooling. Pooling is not
generally necessary for change detection, it simply helps when the individual signals are
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weak, relative to noise. This is because in these tasks each individual sensory channel
is sufficient for change detection, albeit with a lower success rate: mathematically, these
tasks are “separable”. Second, while there is important independent evidence of multisen-
sory learning [1, 46, 28], these tasks do not explicitly examine the learning mechanisms by
which regularities in the environment are internalized, so that any change is surprising.
This would require measuring trial-by-trial neuronal activity as subjects learn to pre-
dict patterns in multisensory sequences, and as these patterns are subsequently violated
by change. Third, because these detection tasks contain multisensory redundancy, they
cannot be used to isolate brain responses to unexpected patterns. In other words, any
measured surprise at an unexpected pattern is confounded with surprise at each of the
components that constitute the pattern. This is particularly important for any attempt
to unambiguously isolate surprise or “prediction-error” learning mechanisms implicated in
pattern learning [33, 27]. Our experiments will address these shortfalls. In addition, our
data on the role of multisensory surprise will bridge two different literatures on learning,
which respectively emphasize the importance of multisensory learning techniques [56] and
the importance of error or surprise [53, 32, 11].

The new DSM-5 diagnostic criteria for ASD includes sensory alterations. In fact,
multisensory integration deficits have been hypothesized in ASD for decades and numerous
therapies focus on facilitating sensory integration [54]. It is therefore remarkable how little
data exist to assess this claim [59, 6]. There are important pointers that multisensory
integration is compromised in ASD, such that sufferers have difficulty binding information
coming from different sensory channels [55, 19, 30]. For example, autistic subjects do not
perceptually bind audiovisual signals, with implications for language comprehension. No
study to date has tested whether multisensory prediction or change detection are similarly
compromised (e.g. as a downstream consequence of integration problems). This may be
important because ASD sufferers typically show aberrant responses to environmental
change: In particular, an ”anxiously obsessive desire for sameness” [41]. It is currently
not known whether this desire for sameness results from disturbing unpredictability in
their multisensory experience.

2.3 Causal inference
Healthy subjects learn the patterns of causation that govern their environment [23, 43].
According to the most influential model of this causal learning, an internal association
between cause and effect is updated whenever causal predictions are violated [57]. Unfor-
tunately, roughly 40 different algorithmic models of causal learning exist, each explaining
different aspects of the data [38]. Furthermore the majority are heuristic, i.e. they do not
formally specify the computational goal of causal learning. Parsimonious computational
principles may help unify and simplify models of causal inference [39, 35].

These theoretical principles have also greatly influenced recent models of perception
[31, 52, 37, 42]. In such models, perception is seen as fundamentally a problem of causal
inference, in which the computational goal is to infer the unobserved environmental causes
of sensory stimulation. These models hold that humans represent the joint probability
of causes and effects: causal inferences then result from simple operations on this joint
representation. This joint probabilistic representation of both cause and effect is a defining
characteristic of such “generative” models of cortical learning, and distinguishes them from
other heuristics [25, 32]. This fundamental claim that the brain encodes joint patterns of
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cause and effect in the service of causal inference is still an important open question [61],
which we consider in our experiments below.

Altered causal reasoning and inference is central to one influential theory of autism
[3]. By this theory, ASD sufferers fail to accurately infer the hidden beliefs and desires
that cause others to act. Beyond social inference, there is a long-standing view that other
aspects of everyday causal inference are compromised in ASD, but that these differences
are not always easy to identify in the lab [34]. To date there are very few neuroimaging
studies which contrast autistic and neurotypical causal inference [40]. Not one has directly
examined the cortical computations underpinning multisensory causal inference in ASD
(or healthy controls).

3 State of personal research
I am a statistician with a background in experimental psychology, economics and biology.
I won a PhD scholarship and two Post-doctoral fellowships which gave me full freedom to
identify and develop a research program in computational and behavioral neuroscience.
My program includes theoretical and experimental work. First, I develop novel statistical
tools for behavioral and big neuroimaging data [16, 15, 14, 18, 9, 8]. Second, my models
and experiments examine learning and decision-making under uncertainty [12, 13, 17, 11],
using tools from game theory, information theory, reinforcement and Bayesian learning,
psychology and biology (electrophysiology, genetics, endocrinology). They ask whether
people interact, search, explore, learn and generalize in an optimal manner, especially
given conflicting observations, beliefs or interests. To date, my computational neuro-
science projects involved developing mathematical models of prefrontal, striatal and hip-
pocampal function [12, 13, 17, 11].

4 Detailed research plan

4.1 Experiments I: Pattern reversal paradigm (PRP)
Learning to detect recurrent or surprising patterns in our environment is crucial for sur-
vival. Remarkably, multisensory research has never unambiguously isolated this capabil-
ity. We aim to understand how the brain learns to predict regular patterns, i.e. relation-
ships between elemental features, and how it detects unexpected irregularities. We will
do this by measuring how behavioral and brain responses to multisensory patterns change
with learning. We propose a novel learning paradigm – a probabilistic pattern reversal
paradigm (PRP) – in which the subject learns to predict the probability of upcoming
multisensory patterns based on available cues. In this task the cue-conditional probabil-
ity of each pattern periodically changes, simultaneously & without warning. Critically,
the probability of each pattern component remains constant (Figure 1a). Thus, pattern
reversal should selectively surprise any brain system which predicts multisensory patterns,
because unpredicted patterns are now observed and predicted patterns are omitted. Pat-
tern reversal will not however surprise any brain system which predicts the components
of a pattern in isolation: due to our experimental design, such systems would be blind
to reversal. By measuring neuronal surprise – or “prediction error” - we can isolate brain
responses to unpredicted gestalt patterns that are not reducible or separable into their
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Figure 1: Our experimental paradigms. (a) Our probabilistic pattern reversal paradigm
(PRP). On each trial we randomly sample a visual cue (+ or -) with equal probability,
followed by a multisensory event. This multisensory event is composed of visual (square
or diamond) and auditory (low or high tone) elements. In our design, none of these
unisensory elements is ever particularly surprising because they always occur with equal
probability regardless of cue reversal, i.e. it makes no difference if we secretly swap the “+”
and “-” in this figure. Conditional on each cue however, a probabilistic pattern emerges:
not all configurations are equally probable. In particular, diamond-low or square-high
follow cue “-”, and diamond-high and square-low follow cue “+”. Having learned this
contingency, subjects should be surprised if we reverse the contingencies because they now
see unexpected patterns. (b) The opposite problem to (a). This contingency describes
the multisensory “causes” of a visual “effect” (i.e. + or -). Reversing the contingencies,
i.e. swapping outcomes “+” and “-”, should lead to surprise, albeit unisensory surprise.
(c) Tasks in (a) and (b) can be solved by learning separate, task-specific models: each
solves their half of the problem. Alternatively, a single joint model can be learned. This
joint model solves both problems and additionally permits new inferences. For example,
having learned a forward or generative model by observing cause-effect relations in (b),
it can later invert this model to infer the hidden cause of an observed effect as in (a).
Using our causal inference reversal paradigm (CIRP), we test whether humans indeed do
this. This joint model can be depicted generally as a causal directed acyclic graph. Here
x1 and x2 are random variables indicating the multisensory cause, y is their effect. (d)
In the CIRP, subjects are trained on forward causal models of System 1 and System 2.
The sequence of observation is reversed in both systems. At the same time the causal
contingencies in System 1 are also reversed. Causal inferences about System 1 should be
violated relative to those of System 2, triggering measurable surprise. In a Bayes-optimal
learner, this surprise should be formally identical to that following reversal in the PRP,
providing comparability across experiments. We will measure EEG mismatch responses
to this violation. (e) Our decision-making task asks subjects to complete patterns for
reward.
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elemental parts. We will measure this novel pattern surprise with EEG, in the knowledge
that many other types of surprise or mismatch responses are readily observed with this
methodology. By combining our passive learning paradigm with EEG, we can readily
accommodate diverse and challenging populations, such as those encountered in adult
and pediatric psychiatry.

4.1.1 Methods

Task: In our PRP, both multisensory patterns and their unisensory constituents are
completely unpredictable without the cues. Cues do not predict the probability of any
unisensory component in isolation. In contrast, each cue does predict the probability of
certain multisensory patterns. In other words, having seen the cue, certain combinations
or relationships of unisensory elements are more likely than others, despite the individual
elements being equally likely.

Our design ensures that neurophysiological measures of pattern surprise cannot be
attributed to habitation or the base presentation rate of any stimulus. The design ensures
that novelty/familiarity of cues and outcomes are controlled because subjects see each cue
and element the same number of times throughout the experiment. This is important
because novelty might elicit confounding brain responses. Simple recency effects are
constant because the presentation rate of each cue or element is the same.

Decision-making: Decision-making requires one to combine the predicted state of the
world and the predicted value of that state: this configuration together determine the
expected value of actions. We can therefore use decision-making as an index of effective
pattern prediction in our task. To assess decision-making, we will use a simple choice
task with real financial rewards (Figure 1d). After initial training in the PRP but before
PRP reversal, subjects will decide how to complete patterns for reward. On each choice
trial, subjects are first instructed about which sound will be rewarded. They then see
a cue. Finally, they decide between shapes, see Figure 1d. If they choose the shape
corresponding to the rewarded sound, then they win. Subjects who have successfully
learned to predict patterns can win on every trial, otherwise they win at chance. We can
therefore quantify how well subjects use pattern learning in the service of decision-making,
using their attained reward as a behavioral index of learning.

Brain ERP: We will quantify EEG responses [7, 33] to surprising versus non-surprising
patterns (before versus after reversal).

Brain connectivity and plasticity: We will use our EEG data to infer how brain
networks learn to predict multisensory features in our PRP. To do this, we draw on
established data-analytic tools for EEG time-series: so called “dynamic causal models”
of brain connectivity [49]. These tools permit us to model activity in auditory regions,
visual regions and “cross-modal” regions, and their dynamic interactions. Critically these
tools permit us to identify the physiological cause of surprise-dependent connectivity
changes in brain, and relate it to prediction error theories of learning. This gives us
a direct handle on the mechanisms of adaptive pattern prediction. We will use fine-
scale computational models of learning dynamics to dissect the algorithms which might
implement multisensory learning, relating them to important prior work [44, 62, 4, 42].

Participants: We will collect data from 150 neurotypical and 150 ASD subjects. This
permits us to publish a paper both on the basic mechanisms, as well as any observed
aberration in ASD. To help with data collection, we will recruit a EEG research techni-
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cian for 2 years. Our sample size is based on the following power calculation: To detect
a 3 microampere ERP group difference, assuming a within-group standard deviation of 4
(constant across groups), a sample size of 75 participants per study per group should give
us power of 99.8%. Inclusion criterea: ≥18 years, written informed consent, in-house clin-
ical diagnosis of Autism spectrum disorder. Here in switzerland, patients are diagnosed
according to ICD-10. This means, they mostly have a diagnosis of Asperger Syndrome (or
atypical autism). Exclusion criterea: acute psychiatric disorders (i.e. the most prominent
ASD comorbidities are substance abuse, depressive episode, psychotic episode), antipsy-
chotic drugs or stimulants (e.g. dopamine antagonists or methylphenidate) within the
last 48h (dopamine may be involved in our learning task) and any acute medical con-
dition. We will take other measures - including the temporal binding window - in both
ASD and neurotypical, subjects to better understand group differences and relate them
to influential probabilistic accounts of ASD [10, 48, 50].

4.2 Experiments II: Causal inference reversal paradigm (CIRP)
In our PRP paradigm above, subjects learned cue-conditional patterns: a multisensory
pattern only existed conditional on the cue. It is remarkable that this same capacity
to encode conditional patterns is central to recent theories of causal inference. In these
theories, subjects internally model causal relations in the world and infer unobserved
causes or effects. For example, whenever a single observed effect can arise from two hidden
causes, subjects are uncertain about which cause was responsible, until they observe the
cause itself. This (inverse) relationship between the plausibility of two competing causal
explanations can invoke exactly the same probabilistic patterns of anticipation as seen in
the PRP above, where the “cue” is simply the observed effect to be explained. We aim to
find evidence for this form of pattern processing, which is a signature of Bayesian causal
inference.

Our causal inference reversal paradigm (CIRP) uses two facts to achieve this. First,
reversing causal contingencies should generate surprise at previously unexpected events.
Second, in principle a subject may observe cause and effect in any order: the sequence of
causation need not be the sequence of observation. As explained next, our experimental
design uses both of these facts, jointly reversing both the order of observation and the
contingency.

4.2.1 Methods

Task: On each trial of the CIRP, subjects will first observe a multisensory “cause”, followed
by it’s unisensory “effect”, in two - formally identical - causal systems (Figure 1b and
Figure 1d). The causal contingency in both systems is the exact inverse of that in the
PRP (Figure 1a), a fact which will permit comparability across the two experiments. After
interleaved training on both causal systems, we will reverse the sequence in which subjects
observe cause and effect, presenting the effect first (Figure 1e). This permits subjects to
infer the cause of this observed effect, before actually observing it. We will measure
EEG surprise responses to violations of multisensory causal inference, as discussed next.
To do this, in one of the two systems, concurrently with this sequence-reversal, we will
also reverse the causal-contingencies. This contingency-reversal will surprise any brain
center which had correctly inferred likely multisensory cause of the observed effect (by
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inverting a learned, forward or generative model). Thus, any differential brain response
to contingency reversal must reflect surprising causal inferences.

Other dependent measures: We will use an analogous decision task to the PRP, and
analogous EEG acquisition and analysis (see above).

5 Schedule and milestones
We anticipate 5-6 papers from this work. The intended schedule for years 1 & 2 will be as
follows. Months 1-2: Programming, Month 3-5: Behavioral and EEG (Healthy controls),
Month 6: Data Analysis, Months 7-8: Preparation of manuscript, Month 8: Preparation
of ASD EEG studies, Months 9-10: ASD + neurotypical EEG, Months 11-12: Analysis
and preparation of manuscript for publication, based on the pipeline established from the
preceding study with control subjects. In the final year, we will not hire a technician. I
will gather any outstanding EEG data. In this year I will also write theoretical papers
that synthesize and model all of our findings, putting them in the context of existing
theories of neuronal computation.

6 Relevance and impact
Basic science: The goal of computational neuroscience is to meaningfully parse the ap-
parent diversity and complexity of brain structure and function. Following this ideal, our
simple experiments are original in attempting to follow a unifying computational theme
across multiple different domains. This approach promises to open new links between tra-
ditionally distinct academic fields. For example, the “multisensory integration” literature
does not address the learning algorithms which the brain uses to update multisensory
predictions. Conversely, the canonical models from learning theory do not address how
the brain learns to predict multisensory patterns. Our work adds to both fields and helps
bridge them. Applied science: Multisensory function is disrupted in many psychiatric
populations. In autism and schizophrenia, for example, surprising multisensory events
are at the core of theories of aberrant perception [21, 20, 22, 58]. Our tasks offer a new
and simple test of this theory, which is easy to administer in challenging populations.
Clinical: Early intervention in ASD could improve development. Current diagnostic
methods rest partly on verbal clinical assessment. This restricts the age at which autism
can be diagnosed due to language barriers. There is a need for a reliable clinical tools for
the diagnosis of autism in young children. EEG is low cost, non-invasive, and suitable for
clinical applications, as well as academic ones such as ours.
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