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Abstract

The relative magnitude, or ranking, of multiple parameters is often more interesting or

trustworthy than their absolute magnitude, or than strawman tests of their equality. Yet

there is currently nothing akin to a simple β% confidence or credible region for this ranking.

We first show how such a credible region can be encoded as a finite collection of full rankings.

For example, collecting together the two disjoint parts of parameter space R3 satisfying full

rankings w1 < w2 < w3 and w2 < w1 < w3 respectively, we attain a coherent (partial)

ranking which we can denote 1, 2|3. We provide a general construction for the best β%

Bayesian posterior credible set of such rankings, henceforth denoted Cβ. The approach can

be applied in both exact and approximate - MCMC and variational - settings and offers

interpretational advantages over conventional analyses. By sidestepping the computation of

marginal likelihood and Bayes factors our procedure requires neither informative priors nor

informative hypotheses.

Keywords: Regression, multilevel, order theory, informative hypotheses, region of

practical equivalence, encompassing priors, compositional data analysis (coda), simplex.

Word count: 3600
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A Bayesian credible set for ranking effect sizes

Introduction

Scientific research often scrutinizes theoretically-inspired hypotheses via classical tests

or Bayesian model comparison. But the impact of theory on data analysis is sometimes

premature and questionable and there remains an important place for more open-ended or

exploratory analyses. We apply this maxim to ranking parameters, see Figure 1, a task

currently dominated by confirmatory methods (Gu, Mulder, Deković, & Hoijtink, 2014;

Klugkist, Kato, & Hoijtink, 2005; Mulder & Olsson-Collentine, 2019; Mulder, Hoijtink, &

Klugkist, 2010). To our knowledge only one exploratory scheme for general multi-parameter

inequalities has been advanced (Stern, 2005), but this avenue of research appears to have

been stifled by concerns that 1) scientifically impossible hypotheses should first be excluded

from the search space or that 2) a greater multiple comparisons problem compromises the

false positive rate (Klugkist, Laudy, & Hoijtink, 2005).

This critique is however easily overstated. In situations of genuine scientific

uncertainty, it is the confirmatory approach which is more risky, because it assumes with

certainty that the true data generating process is somewhere among the limited set of

theoretically-inspired hypotheses. When this assumption breaks, the approach predictably

incurs false positives: a hypothesis with overwhelming positive evidence over its limited

theoretical competitors may nonetheless pale beneath the (omitted) true model. Posterior

model probabilities generally depend on the set of models considered. Clearly with all else

being equal, a hypothesis that competes well in a broader field meets a higher - not a lower -

standard of evidence. Conversely, there is no logical requirement to exclude “scientifically

impossible” hypotheses from consideration a priori: Bayesian inference automatically

downgrades their posterior probability. As we show in this work, exploratory schemes can at

once search a larger set of possibilities and readily control the multiple comparisons problem.
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Figure 1 . Full rankings in 2 and 3 dimensions. a) The two full rankings in R2 are reflections

about w1 = w2. b) It is hard to visualize a 3 dimensional parameter space. We therefore

simply illustrate a representative plane of type R2, orthogonal to w1 = w2 = w3 which cuts

through the full parameter space R3. In this transect we can see how the 6 = 3! full rankings

in R3 reflect across w1 = w2, w2 = w3 and w1 = w3 and intersect at w1 = w2 = w3. These

equalities themselves have neglible probability under any uncertain prior, which leaves all

the mass to full rankings, as discussed in the text. c) A standard 95% credible set in solid

grey alongside our credible ranking 1|2 in hashed grey. d) Similarly for 3 dimensions. Here

2, 3|1. If our parameter space is R3 then 2, 3|1 is the hashed grey region which extends

infinitely bottom left and projectively into the axis of gaze. Figure 2 illustrates a procedure

for identifying the credible sets just discussed.
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We propose simply summarizing the posterior distribution of any well-specified

parametric model, e.g. ordinary linear or multilevel regression, which has been estimated

either analytically or by MCMC. As with the confirmatory methods mentioned above, we

view this parametric model as “encompassing” many submodels, i.e. different putative full

rankings like w1 < w2 < w3 or w2 < w1 < w3 competing to explain the data. However, in

analogy to “highest β% posterior density credible sets”, we then seek to aggregate together

the smallest number of these submodels required to attain a coherent partial ranking like

1, 2|3 ≡ 2, 1|3, for a fixed posterior probability β. This set can also be aptly described as the

finest partial ranking (FCR) with probability β, which we denote Cβ. Figure 2 schematically

illustrates Cβ, and our proposed approach for identifying it, see the supplemental material for

the mathematical formalization.

Our choice to limit the cardinality or complexity of our posterior inference for fixed β,

contrasts with the confirmatory approach which seeks to maximize posterior model

probability: in that confirmatory setting, assuming suitable complexity penalties, higher

probability models are superior by definition (Gu et al., 2014; Klugkist et al., 2005; Mulder

& Olsson-Collentine, 2019; Mulder et al., 2010). Also note that while Bayes factors and

therefore informative priors make sense in that confirmatory work (Jeffreys, 1961; Mulder,

2010), our procedure requires neither informative priors nor informative hypotheses (because

we can sidestep computation of marginal likelihood). This is fitting in exploratory settings

with scientific uncertainty.

Throughout this work P (·) to denote a probability, p(·) for a probability density and

W for a generic parameter space, e.g. Rd, (0,∞)d or the regular simplex ∆d. We will assume

that the underlying estimand w∗ ∈W is a single point whose components are on the same

scale of measurement, and that we have collected some data to derive posterior density

p(w|y) = p(y|w)p(w)/p(y). Our work is partly inspired by the work of Lebanon & Mao

(2008) on discrete preferences, and we have borrowed some other notation and definitions
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Figure 2 . This graphic depicts our proposed method by considering the posterior distribution

of a schematic model with three parameters. Each square depicts the same representative

plane as Figure 1b, still sitting orthogonally to w1 = w2 = w3. The schematic also includes

(a slice of elliptical) posterior probability iso-contours. Our algorithm proceeds bottom to

top. Starting at the base, we advance up the diagram (choosing the most probable event at

the next level up). Note that upward paths correspond to the subset inclusion relation ⊆

so posterior probability monotonically increases accordingly: see Figure 3 for a numerical

example. We stop at the first region with probability greater than 95% and call this region the

95% finest credible region. Our procedure is inconclusive if (and only if) the first such region

is the vacuous ranking at the top of the diagram. This latter result should not clearly be

confused with the assertion that all parameters are equal, i.e. the classical omnibus hypothesis

w1 = w2 = w3!
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from Critchlow (2012), Lebanon & Mao (2008) and Stanley (2011). In what follows we first

introduce some simulations which statistically evaluate our approach before applying it a

real dataset. A detailed mathematical justification of our approach can be found in the

supplementary material.
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Figure 3 . Posterior cumulative density over increasingly coarse partial rankings. The ground

truth in this example was 1|2|3|4|5|6|7. Progressing from left to right across the x-axis,

rankings become coarser by the loss of one distinction (“|”). All points above the horizontal

black line have at least 90% posterior credibility.

Rationale

Let the function f label each point w ∈W with its full ranking. For example, f gives

the point w = (0.2, 0.7, 0.1) the label 3|1|2 because the third component is least important,

followed by the first, with component two being the most important. The true ranking of the

underlying estimand is f(w∗), which we expect to be a full ranking with probability 1 under

any continuous prior. This expectation is fitting in situations of high scientific uncertainty

and reflects that parameters equalities are actually very special. Importantly, the notation

extends to coarser, partial rankings, such as 3, 1|2 which are simply coherent collections of
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full rankings. Being only partial, these carry less information about the true full ranking

f(w∗). Because full rankings are disjoint, the probability of a partial rankings is simply the

sum of its constituent full ranks. A fruitful strategy is therefore to first calculate the

probability of each full ranking before aggregating them as follows.

In perfect analogy to the familiar construction of “highest posterior density credible

sets”, a simple algorithm can then start at the maximum full ranking a posteriori, before

recursively seeking the maximum a posteriori ranking at the next level of resolution (among

all partial rankings with one additional bar “|”" exchanged for a “,”). This is depicted in

Figure 2 and gives the optimal nested sequence of partial rankings. We define the β% “finest

credible rank” (FCR), denoted as Cβ, as the first (finest, or most informative) such partial

ranking with β posterior probability. This is the most informative statement that can

confidently be made about the ranking of parameters.

By ranking parameters as above we consider how they relate to one another. In some

settings it becomes important to also know their relation to a null value ?. For example, in

settings when we can not safely assume in advance that the underlying parameters have the

same sign, the null value ? is often 0, e.g. Chumbley 2021. One might answer this question

by resorting to conventional sign tests or by complicating the preceding FCR problem

specification and algorithm. Another pragmatic approach is as follows. First, identify the

FCR as above, which will have say n distinct ranks. There are then n+ 1 ways relating it to

null value ?: just compare the posterior probability of these. For example, if the FCR were

found to be 4|1, 2, 3|5 in some 5 parameter problem, then n = 3, and the following 3 + 1

situations are all compatible with this FCR: ?|4|1, 2, 3|5, 4| ? |1, 2, 3|5, 4|1, 2, 3| ? |5 and

4|1, 2, 3|5|?. Mulder provides tools for this.
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Simulations

Simulated data

To specify the ground truth in our simulations we first sampled d = 3, 5, 7 parameter

vectors v∗ uniformly on the d part unit simplex, i.e. (w1, .., wd) ∈ Rd satisfying

wt > 0,∑twt = 1. We then independently scaled these samples to give w∗ = δv∗ for δ

between 0− 5. Here smaller δ makes parameter ranking harder because any two components

of w∗ are closer on average. These simulations include the degenerate case δ = 0 where

w∗ = (0, ..., 0). For all other cases δ > 0, w∗ could be fully ordered, i.e. w∗ contained d− 1

true distinctions (inequalities or bars). Given w∗, we then generated yi = ∑d
j=1 xijw

∗
j + εi

with independent εi ∼ N(0, 1), for i = 1, ..., n, for four sample sizes (n = 70, 140, 700, 1400).

Inference

Our construction for Cβ requires calculating posterior probabilities for a general partial

ranking. This may be achieved via closed-form integrals over the relevant subsets of posterior

p(w|y), or by using a sample from that posterior. In the latter case, the posterior probability

is (up to Markov error) just the fraction of samples satisfying the ranking constraint.

Sampling schemes such as MCMC have the tremendous advantage of generality, but

arguably the disadvantage of computational burden and tedius Markov error. See Chumbley

et al 2021 for an application of MCMC to a ranking problem. For variety, in this work below

we evaluate closed form integrals, borrowing the deterministic scheme due to Mulder (2014)

to calculate the probability of each partial ranking in the most credible chain. we do not

exploit the full grandeur of his method, but simply evaluate all probability of all full

rankings once. These are the atoms which our algorithm aggregates into the final partial

rank, our β FCR. Crucially, the probability axioms directly permit us to simply add the

probability of these parts together to attain the probability of the whole FCR.
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In agreement with the data generating process above, the likelihood p(y|w) was a

standard linear regression model.

Goals

Knowing the simulated ground truth w∗ and its corresponding true full ranking f(w∗),

we can examine its relation to our inferred partial ranking, the finest β% credible ranking

denoted Cβ. First, is the FCR Cβ consistent with the true full ranking? We say it is

inconsistent if there is any i 6= j for which the FCR asserts wi < wj while in fact wj < wi in

the simulated ground truth. Otherwise, we say it is consistent. Second, how much

“information” does Cβ retain? Here,we q = r/r∗ to measure the quality of information in Cβ,

where r is the number of distinctions (inequalities or bars “|”) in Cβ and r∗ is the true

number in f(w∗). Therefore, a larger q means a more informative inference. The first

question expresses the minimal requirement that Cβ does not contradict the truth. The

second question is motivated by the desire for Cβ to be as informative as possible. Ideally, it

should faithfully retain all distinctions made in the true ranking f(w∗). If f(w∗) = Cβ then

q = 1 reflecting that our credible set contains just one full ranking. Smaller q implies higher

uncertainty about the full rank.

Our simulations included the degenerate case of δ = 0 where w∗1 = w∗2 = ... = w∗d is

akin to the conventional omnibus null hypothesis. This is depicted as the central intersection

in Figure 1b. We can identify “false positives” in this setting with Cβ 6= W. Conversely, the

remaining simulations assumed that {w∗1, w∗2, ..., w∗d} can be totally ordered. In this setting

we can identify “false negatives” with Cβ = W and can therefore ask a third question: What

is the proportion of false negatives and false positives so defined?
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Results

We can answer the three questions posed above as follows. First, we found that our

inferred partial rank Cβ violated the ground truth in only 0.02 percent of the simulations.

Second, on average over all simulations 0.50 % of the distinctions were preserved. Table 1

shows that q, the proportion of distinctions preserved in Cβ, increased with the simulated

sample size. We naturally expected q to improve with δ, because the components w∗ will

vary more relative to one another and to the observation noise. Figure 4 captures this

dependence by plotting jittered q against the per-simulation standard deviation over

components of w∗ (which reflects different settings of δ). In particular the x-axis of Figure 4

is 1
d

∑d
i=1(w∗d − w̄∗)2, with w̄∗ denoting the mean over components of the ground truth w∗.

Table 1

The proportion q of distinctions preserved by the posterior credible ranking increased with the

simulated sample size.

n q

70 0.35

140 0.42

700 0.59

1400 0.64

Our third and final question is answered in Table 2, which summarizes the false

positive and negative rates in our simulations. Column TRUE indicates that the underlying

parameter w∗ can be fully ordered. Column FALSE indicates that there w∗ cannot be

ordered at all, because w∗ = (0, ..., 0). Row TRUE indicates that Cβ detected at least one

distinction or inequality of this order. The diagonals therefore offer one measure of success.

Bottom left indicates “false positives” where a false distinction was inferred, so Cβ 6= W

despite none actually existing because w∗ = (0, ...0). Top right indicates “false negatives”,
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Figure 4 . Quality q (jittered) against the per-simulation standard deviation over components.

This illustrates the intuitive fact that, in practice, the quality of the relative measure Cβ does

depend on the scale of underlying differences between component parameters relative to the

scale of the noise. Rows vary over the dimension d of simulated w∗ and columns vary over

sample size n.
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where no distinction was inferred so Cβ = W, while in fact w∗ 6= (0, ...0) was fully ordered.

Thus false positives were very rare over all conditions. While false negatives were more

prevalent overall, their rate vanishes to practically zero for stronger effects, indexed for

example by δ below (or equally the per-simulation standard deviation over components

discussed above).

Table 2

False positives and negatives of the posterior credible ranking, over all simulations. The

column variable indicates the ground truth: whether the underlying parameter can be ordered

(TRUE) or not. The row variable indicates whether any order was detected by our method.

FALSE TRUE

FALSE 117 41

TRUE 3 559

Application of our method to real behavioral data

To better understand percieved discrimination against female applicants in the hiring

process, Carlsson & Sinclair (2018) regressed perceptions of discrimination towards female

victims on “belief in discrimination against women”, “stigma consciousness”, and “feminist

identification”, while controlling for “gender” and “belief in discrimination against men”. As

a regression equation, this can be expressed as

ydiscriminationW,i = β0 + βbeliefWXbeliefW,i

+βstigmaXstigma,i

+βfeministXfeminist

+βgenderXgender,i

+βbeliefMXbeliefM,i + errori.

where the β’s are standardized regression effects of the variables on perceived
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Table 3

False positives and negatives of the posterior credible ranking, delta = 0.

FALSE TRUE

FALSE 117 0

TRUE 3 0

discrimination, see Mulder & Olsson-Collentine (2019) for more details. In this setting, the

finest credible ranking above 90% was “stigma , feminist | beliefW”, with posterior

probability of 94%. This means that belief in discrimination about women is more important

than either stigma consciousness or feminist identification, the latter two being

indiscriminable. This result suggests that, in attempting to explain the percieved

discrimination against female applicants in the hiring process, the celebrated “prototype”

explanation of social psychology trumps the “same-gender bias” explanation, see Carlsson &

Sinclair (2018). Importantly, this conclusion was reached automatically, without the

requirement to explicitly specify any confirmatory hypotheses in advance. This insures the

method against local minima, i.e. selecting a bad ranking that is nonetheless relatively

plausible amoung the overly-restricted set of hypotheses considered. Note that while a

typical coefficient-based analyses might only consider the marginal distribution on each

parameter wi|y at a time, this analysis summarizes the full posterior distribution.

Conclusions

Classical hypothesis tests are increasingly discouraged and demand careful attention to

the multiple comparisons problem. Confidence or credible intervals are a valuable alternative

but become prohibitively complicated in higher dimensions. Bayesian model comparison is

ideally matched to confirmatory research, where prior data and theory clearly outline the

competing explanations. We consider another way to summarize multi-parameter hypotheses
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Table 4

False positives and negatives of the posterior credible ranking, delta = 1.

FALSE TRUE

FALSE 0 34

TRUE 0 86

in situations of high scientific uncertainty, when the relative magnitude of parameters is of

interest. In analogy to the familiar highest posterior density credible sets, this entails

evaluating increasingly coarse tilings of the parameter space for the smallest with partial

ranking with β probability. We call this the finest β% credible ranking (FCR) supported by

the data. Just as a highest density credible set contains the posterior maximum, our finest

credible set of full rankings Cβ contains the posterior maximum full rank. It can be shown

that the FCR is generally a connected set of regions, meaning that any full order in the FCR

is at most Kendall distance 1 from some other full order in the FCR, see pg 89-91 of Stanley

& others (2004). In other words, the simple topology of FCR (Euler characteristic = 1)

mirrors the unimodal prior and likelihood assumptions common in many applications. We

have shown that FCR has low error and that the information it preserves about true ranking

unsurprisingly depends on the signal to noise in the data: it increases with the sample size

and the average distance between components of the underlying estimand w∗.

A couple of points on interpretation. First, the trivial ranking Cβ = W is inconclusive

about the partial ranking of parameters: it simply reflects high posterior uncertainty is not to

be taken as evidence for the popular omnibus equality hypothesis wi = wj for all i, j. (This

can also be pictured by contracting or expanding the isocontours in our schematic posterior

density in Figure 2.) It does not imply p(wi = wj,∀i, j|y) ≥ β. In fact we have not studied

equality hypotheses at all in this work, in part avoid complicated distractions such as the

Lindley paradox, see Chumbley et al 2021, Kruskal & Majors (1989), Johnson & LeBreton

(2004), Mulder & Olsson-Collentine (2019). Note however that any non-trivial conclusion
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Table 5

False positives and negatives of the posterior credible ranking, delta = 2.

FALSE TRUE

FALSE 0 5

TRUE 0 115

Cβ 6= W does indeed contradict some equality hypothesis: if wi < wj in the Cβ, then wi 6= wj .

For example, any Cβ with 2 or more ranks like w1 < {w2, w3} contradicts the omnibus

hypothesis above. Similarly, if the Cβ is a composition of 3 or more distinct ranks, we can

reject any set of equality hypothesis constraining parameters to be one of only two values.

This may be useful, for example, in developmental epidemiology these two cases amount to

rejecting the so-called accumulation hypothesis and the critical period hypothesis in favor of

any so-called sensitive period hypothesis consistent with the Cβ Chumbley et al 2021.

The ideas presented here are agnostic to the particular method used for posterior

inference: they apply to either a posterior sample or to some deterministic or exact scheme.

In this work we have chosen to adapt to our purposes a deterministic scheme originally

proposed for confirmatory analyses and available in the R package “lmhyp” (Mulder, 2014).

This scheme is fast and has no Markov error, albeit currently having limited generality. We

have also validated our proposed approach for use with MCMC samples from the popular

“brms” package, see Chumbley et al 2021.

While we have focused here on the mean components (w1, ..., wd) of a regression model,

our approach readily applies to rank all or some components of a covariance or precision

matrix. It is therefore useful when studying say the variance components (σ1, ..., σd) in a

multi-level model. In that setting, the finest credible ranking of variance parameters in a

simple multilevel dataset with 4 random factors, each with say 20 levels, might transpire to

be Cβ = σ3, σ1|σ4|σ2. This indicates that random factor 2 explains most variation in the
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Table 6

False positives and negatives of the posterior credible ranking, delta = 3.

FALSE TRUE

FALSE 0 1

TRUE 0 119

outcome, followed by factor 4, but the other factors are indiscriminable. Standard existing

methods obviously cannot directly support such relativistic conclusions, as they simply

isolate the absolute contributions of each factor.
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Table 7

False positives and negatives of the posterior credible ranking, delta = 4.

FALSE TRUE

FALSE 0 0

TRUE 0 120

Supplementary material

Preliminaries

Our procedure should find the maximum posterior full ranking, which may be say

w1 < w2 < w3, and tell us whether it is β% plausible. If not, we naturally want to know

whether some coarser, partial ranking, say w1 < w2, w3, is β% plausible. Note that this

partial ranking is less informative or “coarser” because it subsumes the first. It simply

asserts that w1 is the smallest component irrespective of the relative ranking of w2, w3. A

nice notation for these rankings, which we define more formally in section 3 below, is

h1 = 1|2|3 = {w : w1 < w2 < w3}

h′1 = 1|2, 3 = {w : w1 < w2 < w3 or w1 < w3 < w2}.

In this notation a recursively constructed coarsening of any partial rank can be

represented simply by replacing some of the “|” with “,”.

Note that h1 treats an entire class of points w ∈W as equivalent, because individual

points are not of practical interest. It is therefore akin to the popular “regions of practical

equivalence” (Kruschke, 2011) but with two points deemed equivalent w ≡ w′ not because

they are close to being equal but because they have the same full ranking. More abstractly,

any partial ranking reflects that some set of full rankings are in turn deemed equivalent, as
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Table 8

False positives and negatives of the posterior credible ranking, delta = 5.

FALSE TRUE

FALSE 0 1

TRUE 0 119

with h′1 above which equates h1 ≡ h2 where h2 = {w : w1 < w3 < w2}. Our posterior

credible set Cβ will be constructed in this way, using equivalences to glue together just as

many full rankings as is necessary to attain the desired β% credibility, see Figures 1,2 and

section 3. Briefly, we identify this smallest credible set Cβ such that P (Cβ|y) ≥ β among a

well-defined space of partial rankings by simple application of the additivity and

monotonicity of probability (calculating the posterior probability of each generic ranking h

as P (h|y) =
∫
h p(w|y)dw).

Definition: An equivalence relation on a set (Q,≡) is a set Q with a relation

≡⊆ Q×Q such that for all x, y, z ∈ Q the relation ≡ is 1) reflexive x ≡ x 2) symmetric

x ≡ y =⇒ y ≡ x and 3) transitive x ≡ y and y ≡ z =⇒ x ≡ z.

Given a surjective function f : A→ B onto a finite set B, any partition of

B = B1 ] ... ]Bn into n blocks correspondingly partitions A = A1 ] ... ]An into n blocks as

follows. Simply let each block of A be the set of all points which map to a given block of B,

meaning f(x1), f(x2) ∈ Bi for some i. In other words, f : A→ B together with a partition

of B, imply an equivalence relation on A where two points x1 ≡ x2 are equivalent if they

map to the same block of B. We will use equivalence relations constructed in this way to

abstract over all real points in W that share some partial ranking, and use subscripts such as

s in ≡s to distinguish equivalence relations - or partitions - of different coarseness.

Definition: A binary operation on a set (Q, ◦) is a function ◦ : Q×Q→ Q. We will

use the special binary operation ◦ of an algebraic group - namely a closed, associative binary
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operation with inverses and an identity element - to construct the equivalence relations

introduced above. This group structure also provides a natural way for us to calculate the

size or coarseness of each class.

Definition: A partially ordered set or poset (Q,�) is a set Q such that for all

x, y, z ∈ Q the relation � is 1) reflexive x � x 2) anti-symmetric

x � y and y � x =⇒ x = y and 3) transitive x � y and y � z =⇒ x � z. We will use this

to compare the coarseness of the equivalence relations introduced above, which in turn

guides our search for Cβ.

Definition: Any partially ordered set has a corresponding covering relation `. Given

the poset (Q,�), we write x ≺ y if x � y and x 6= y. We say that y covers x and write x ` y

when x ≺ y and there is no z ∈ Q such that x ≺ z ≺ y. In other words y is as close as

possible to x. This covering relation ` on the poset Q can be conveniently represented by a

Hasse diagram, as in Figure 2.

Full rankings

We construct our space of partial rankings via the rank transformation f : W→ Sd

which maps each point w to its full ranking π where here Sd is the set of all full rankings,

that is all permutations of parameter indices [d] := {1, ..., d}. More precisely,

f : W \ Bd → Sd where the so-called braid arrangement

Bd = {w ∈W : wi = wj, some i 6= j} contains points which cannot be fully ranked because 2

or more components are exactly equal. We can suppress this technical detail because Bd is a

“tiny” set with probability zero under any jointly continuous prior. In other words, any w

can be fully ranked with probability 1 in the current setting.

For example, f maps w = (4.6, 8.9,−11.4) to π = (2, 3, 1), where π(l) gives the rank of

component wl. This value π of f can also be represented verbosely as a matrix whose first
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row records the component indices 1, 2, 3 of w = (w1, w2, w3) and whose second row records

the rank of each component parameter, here yielding π =
(

1 2 3
2 3 1

)
. For clarity in our setting

we will usually follow a different and more intuitive convention, instead writing this same full

ranking or permutation as 3|1|2, with a “|” notation meaning π−1(1)|π−1(2)|...|π−1(d). While

this bar notation is commonly used in this way to express permutation π on d discrete points

(say integers or objects), we extend its interpretation to the continuous domain W as follows.

First note that the preimages of f , denoted R := {f−1(π) ∈W : π ∈ Sd}, implicitly define

an equivalence relation ≡d, the so-called equivalence kernel of f . This is because f partitions

the domain W of f into equivalence classes, one per full ranking. Thus we say w ≡d w′ if

and only if both w ∈ f−1(π) and w′ ∈ f−1(π). The subscript d here indicates that each class

corresponds to a total ordering of all d component parameters of w. Geometrically, elements

of R correspond to regions of a tesselated W, dissected by a “braid arrangement” of

hyperplanes, denoted R = R(Bd) by (Stanley & others, 2004). Figure 1b attempts to depict

R in the case of our running example, where h1, h2 but not h′1 := h1 ∪ h2 are members of R.

The collection of d! full rankings (regions) in R forms our finest discretization of W, whose

elements we emphasize are defined by

R := {f−1(π) ∈W : π ∈ Sd}

= {{w ∈W : wπ−1(1) < wπ−1(2) < ... < wπ−1(d)} : π ∈ Sd}.

Note the one-to-one correspondence between the regions of R and Sd

Sd ↔ R

π ↔ Rπ := {w ∈W : wπ−1(1) < wπ−1(2) < ... < wπ−1(d)}

which justifies our reinterpretation below of the symbol π or equivalently

π−1(1)|π−1(2)|, ..., |π−1(d) as Rπ ⊆W as above1, e.g. h1 = 1|2|3, h2 = 1|3|2.
1Similarly, notation such as P (π) = P (π−1(1)|...|π−1(d)|) below unambiguously refers to P (Rπ), the
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We have not yet used any special algebraic structure to construct the equivalence

relation above. Recall however that the set of [d] integer permutations Sd is an algebraic

group when viewed as a set of bijective functions [d]→ [d], with the group operation ◦ being

function composition. This group structure applies equally to R: any region (full ranking)

Rπ ∈ R can be bijectively mapped onto another by a series of reflections, the rigid body

isometries encoded formally by the Coxeter reflection group of R, see Figure 1b and Stanley

& others (2004).

Because R partitions or quotients W up to a set with measure 0, it discretizes P (w|y)

satisfying 1 =
∫
W p(w|y)dw into P (Rπ|y) satisfying

1 = ∑
π∈Sd

∫
Rπ p(w|y)dw = ∑

π∈Sd P (π|y) where the final step is just for notational simplicity,

equating π ∈ Sd with its corresponding Rπ. If one Rπ happens to satisfy our criterion

P (π|y) > β%, then π = Cβ and no smaller Cβ is possible: our search for the finest credible

rank Cβ is complete. Otherwise, the fact that R has a group structure will make it easy for

us to define the coarser, partial rankings which will necessarily contain Cβ.

To summarize, any element of R corresponds to a full ranking or total ordering of

component parameters 1, ..., d (each component of w has a single, unambiguous rank and

there are no ties). We have noted that R shares structure with Sd. Viewed discretely, R

exchanges the familiar continuous linear algebra and metrics of W, on which standard

confidence intervals are based, for the simpler group algebra and metrics of discrete regions

within that vector space. We next define partial ranks more generally because these

constitute our finite set of candidates for Cβ.

probability of the corresponding subset of W, see Figure 1. The context should distinguish whether π or Sd

refer to permutations of integers [d], or their corresponding Rπ ⊂W.
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Partial rankings

Figure 2 attempts to depict our space of partial rankings for d = 3. As discussed in the

previous section, for brevity we continue to casually use the notation conventionally used for

subsets Sd, such as 3|1|2 and 1|2, 3, but to refer to the corresponding subsets of continuous

W. Thus row 3 of Figure 2 shows all elements of S3, the complete set of full ranking

equivalence classes of W. Row 2 shows two coarser equivalence relations denoted S3/S1,2 and

S3/S2,1. Here the subscripts in the denominator indicate the integer “composition” of d = 3

parameters over r = 2 ranks.

Less casually, an integer composition denoted γγγ = (γ1, ..., γr), is defined to be a

sequence of r positive integers which sum to d. Associate with each integer composition the

unique partition of integers 1, ..., d, namely

N1 = {1, 2, ..., γ1}, N2 = {1 + γ1, ..., γ1 + γ2}, Nr = {1 +∑r−1
l=1 γl, ..., d}. Then the set Sγγγ is

defined to be the set of all permutations σ ∈ Sd for which the following set equalities hold

σ(Ni) = Ni, i = 1, ..., r.

Thus Sγγγ contains permutations of integers 1, ..., d that permute within but not across

the Ni. It can be shown that this set is a subgroup of Sd, and can thereby induce an

equivalence relation on Sd, defined as the set of right cosets of Sγγγ. We can write this new

and coarser equivalence relation on integer permutations using conventional divisor notation

as in S3/S1,2. Each equivalence class in this relation is a partial ranking of integers

Sγγγπ := {σπ : σ ∈ Sγγγ} with composition γγγ, represented here by the fixed π ∈ Sd. For

example, π =
(

1 2 3
3 2 1

)
, otherwise known as 3|2|1, can alternatively represent the equivalence

class 2, 3|1 = {3|2|1, 2|3|1} in S3/S2,1 as
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S2,1 ◦
(

1 2 3
3 2 1

)
= {

(
1 2 3
1 2 3

)
,
(

1 2 3
2 1 3

)
} ◦

(
1 2 3
3 2 1

)
:= 2, 3|1.

Here the group operation of function composition is explicitly denoted ◦ and the

second equality just substitutes in our preferred notation. This second equality more

formally defines our bar notation for any partial ranking as the set of all full orders of

integers which shuffles components within but not across “|” bars2. The set of such partial

rankings comprise an equivalence relation with the three classes 2, 3|1, 1, 2|3 and 1, 3|2.

Recalling the correspondence R ↔ Sd we have just constructed an equivalence relation ≡γγγ

on our native parameter space W. According to this relation we can now unambiguously say

w ≡γγγ w′ if and only if both w ∈ f−1(Sγγγπ) and w′ ∈ f−1(Sγγγπ) for some π ∈ Sd. But this

notation is cumbersome so we continue to refer to these coarser equivalence classes using

discrete bar notation, identifying symbols like 2, 3|1 with their corresponding subsets of W as

throughout row 2 of Figure 2.

The lattice of partial rankings

Following Lebanon & Mao (2008) we consider the set Td := {Sγγγπ : π ∈ Sd, ∀γ} ∪ {∅} of

all partial rankings augmented by a null element ∅. Unlike that work, we have emphasized

that all these symbols are to be interpreted as subsets of W. Crucially these subsets form a

partially ordered set (Td,�) (see definition above and Figure 2) if we define x � y ↔ x ⊆ y.

Similarly, we will write x ` y if there is no superset of x smaller than y. Then one rank

covers another exactly when it is a single step up some chain in the Hasse diagram, see

Figure 2. The covering set of x, denoted Cx = {z ∈ Td : x ` z}, is naturally the set of all

partial ranks which cover x.

2As a further example, a partial ranking of composition say γγγ = (1, 4, 2) in S7/S1,4,2 refers to something

with r = 3 ranks over d = 7 parameters like 7|1, 2, 3, 6|4, 5.
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Prior probability on partial rankings

In linear modeling scenarios, the prior density p(w) on parameters is commonly chosen

to be continuous and exchangeable with mean zero. For example, p(w) may be an

independent and identically distributed, mean zero Gaussian. Continuity means we believe

the unobserved parameters are distinct and therefore fully ranked without any ties (the event

that any two components are exactly equal has probability zero). Exchangeablity means we

know nothing about the relative rank a priori: the density p(w) has the symmetry

p(w1, w2..., wd) = p(wπ(1), wπ(2), ..., wπ(d)) for any permutation π of [d]. This implies a

uniform prior over full rankings P (Rπ) = 1/d!. More generally, the uniformity P (h) = P (h′)

holds for any two partial rankings h, h′ ∈ Sd/Sγγγ ⊆ Td with the same composition γγγ. This

follows because Lagrange’s theorem guarantees that cosets h, h′ contain the same number of

permutations or full rankings, and exchangeability implies that each of these constituent

permutations is equiprobable. We therefore need only the size of Sd/Sγγγ to attain

P (h) = 1/#(Sd/Sγγγ) for all h ∈ Sd/Sγγγ. We know this size to be
(
d
γγγ

)
, implying that

exchangeability effectively discretizes p(w) into P (h) = 1/
(
d
γγγ

)
for h ∈ Sd/Sγγγ for any

composition γγγ.

Posterior probability of partial rankings and Cβ

Definition: We define the MAP full ranking to be the full ranking with maximum

posterior probability is πMAP = argmax
π∈Sn⊆Td

P (π|y) with π interpreted as Rπ ⊆W.

Definition: A chain is a sequence (R0, R1, ..., Rd) of d progressively coarser partial

rankings in Td so that Ri ` Ri+1 where ` is the covering relation defined above.

Starting from a full ranking R1, say 3|4|2|1, the elements of this sequence are attained

by progressively removing one bar “|” at a time. This will result in the trivial ranking

“1, 2, 3, 4” (no distinct bars or ranks) after 3 steps. Any chain is an upward path in a Hasse
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diagram, see Figure 2. Note that the first element in this chain R0 = φ, R1 must be a single

full ranking, and Rd = W. The number of distinct bars “|” at each step Rt in the upward

sequence is r = d− t for t > 0, which is the number of ways for the chain to proceed.

Definition: The most credible chain is the special chain (R̄0, R̄1, ..., R̄d) such that for

all t, R̄t has higher probability than any competing partial ranking R′t ∈ CRt−1 . Thus

R̄0 = ∅, R̄1 = πMAP and generally R̄t satisfies the recursion R̄t = argmax
Rt∈CR̄t−1

P (Rt|y).

Definition: The β% credible ranking is defined to be Cβ = R̄t where t is the smallest

index such that P (R̄t|y) ≥ 0.95. This motivates our algorithm below.

By definition therefore P (Cβ|y) ≥ β. In practice, equality is very unusual so this

inequality is strict. This is because the posterior probability increases discontinuously with

each progressive coarsening in our construction of Cβ. This makes overshoot likely, in that

the first partial ranking with the desired credibility of β may actually be much more credible

than β. To avoid understating the credibility of a partial ranking in this situation, it

therefore makes sense to additionally report P (Cβ|y), for example C90% = 3|2|4|1|5 and

P (C90%) = 0.99.

Algorithm

Our initial condition for Cβ is the πMAP , the maximum posterior full ranking. Finding

this initialization is the most intensive step of our procedure, involving a discrete

maximization over d! possibilities. In higher dimensional problems, a fast approximation is

π̂MAP = f(wMAP ), where wMAP := argmax
w

P (w|y) and f is still the rank transformation

introduced above. In other words, start at the unique full rank on all d parameters implied

by wMAP . If, for example wMAP = (3.2, 5.9, 4.0, 8.7), then at iteration 1 this corresponds

to setting R1 = 1|3|2|4. Our simulation study below shows that such a heuristic can yield

surprisingly good results. Note that this approximation is always well-defined: continuity of
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our prior/posterior implies that the components of wMAP can indeed be fully ranked with

probability one.

Starting from R1 := πMAP (or π̂MAP ), we immediately stop if p(R1) ≥ β and declare

Cβ = R1. Otherwise, enumerate all hypotheses covered by R1 in the ranking poset - the

smallest ranks which strictly include R1. Each of these candidates has an associated

probability. Choose the most credible of these candidates. If two or more rankings have equal

(and maximal) credibility, then pick one arbitrarily. Repeat until there is a ranking with

credibility ≥ 0.95. See Figure 3, which depicts the trace of this algorithm for one simulated

dataset.

Proof of convergence: The initial full rank will have probability ≤ 1. Probability

must increase at each step progressing up any chain in the poset, by the monotonicity of

probability. We can therefore see that the algorithm will trace out a “cumulative density

function” as it progresses along the most credible chain in the poset. If the algorithm

proceeds uninterrupted to the end, it will remove all d− 1 inequalities from the initial full

rank. This yields the trivial ranking Cβ = W with P (W|y) = 1. Because probability

increases monotonically up to this point, it must at some point pass the desired β% of

credibility. If the algorithm terminates before reaching W, it will have identified the

non-trivial Cβ which has credibility ≥ β%.
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