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Animals approach rewards and cues associatedwith reward, even when this behavior is irrelevant or detrimental
to the attainment of these rewards. Motivated by these findings we study the biology of financially-costly
approach behavior in humans. Our subjects passively learned to predict the occurrence of erotic rewards.
We show that neuronal responses in ventral striatum during this Pavlovian learning task stably predict an
individual's general tendency towardsfinancially-costly approach behavior in an active choice task severalmonths
later. Our data suggest that approach behavior may prevent some individuals from acting in their own interests.

© 2013 Elsevier Inc. All rights reserved.
Introduction

Optimal goal-directed choice involves learning which option is best
and picking it. Problems may arise from having learned an inaccurate
‘model’ of the action-outcome contingencies or from failing to consult
any model at all, as when previously-reinforced habits thoughtlessly
persist in new settings (Balleine and O'Doherty, 2009). Hypothetically,
choice errors might also arise from a behavioral attraction to options
with positive associations, even when this attraction is costly and has
never been reinforced or habitualized. It is notable here that non-
human animals approach reward-predictive cues even when this ap-
proach is inefficient or specifically non-reinforced,1 thereby providing
the canonical evidence for hardwired “Pavlovian” approach systems
(Domjan et al., 2000; Locurto, 1981; Rosenthal and Matthews, 1978;
Sanabria et al., 2006; Williams andWilliams, 1969). However, it is cur-
rently unclear whether this tendency can produce financially-costly
choice errors in humans and, if so, by what mechanism. Specifically, it
is unclear if humans will select the wrong cue in a financial choice
task because of behaviorally-irrelevant reward associations previously
acquired in a separate and strictly passive Pavlovian learning setting.

It is widely believed that passive reward learning depends on dopa-
minergic reward prediction-errors (RPEs) in the ventral striatum (VS)
(O'Doherty et al., 2006; Schultz et al., 1997). Critically however, this re-
gion is also implicated in innate Pavlovian behaviors (Balleine and
Killcross, 1994; Berridge, 2007; Berridge and Robinson, 1998; Boureau
and Dayan, 2010; Corbit and Balleine, 2003; Hall et al., 2001; Ikemoto
and Panksepp, 1999; Killcross et al., 1997; Mogenson et al., 1980;
Panksepp, 2004; Parkinson et al., 2000; Reynolds and Berridge, 2001;
Salamone and Correa, 2002; Sesack and Grace, 2009; Talmi et al.,
2008) but not goal-directed (Balleine and Killcross, 1994; Corbit et al.,
2001) or habitual behaviors (Reading et al., 1991; Robbins et al.,
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1990). This makes the VS relevant to the acquisition of inflexible behav-
ioral attraction towards cues with positive associations.

In our task, male subjects passively observed associations between
twoneutral cues andun/rewardingpictures, respectively: pictures of frac-
tals versus pictures of bikini-cladwomen posing in provocative body pos-
tures. Months later, the same subjects had to choose between the very
same twopredictive cues formoney, in the absence of any fractal or erotic
outcomes. They could earn more money by choosing the correct cue or
choose the erotically-associated cue for considerably less money. This
task therefore pits Pavlovian value against instrumental value— the cor-
rect cue lacks erotic associations but has a higher expected financial re-
turn. It therefore resembles both ‘Pavlovian–instrumental-transfer’ (PIT)
paradigms and ‘negative auto-maintenance’ paradigms (Balleine, 2005;
Guitart-Masip et al., 2010; Prévost et al., 2012; Sanabria et al., 2006;
Talmi et al., 2008). Using fMRI, we aimed to predict individual vulnerabil-
ity to ‘fatal’ Pavlovian attraction from passive VS learning responses. We
used responses in the ventral striatum as a proxy for Pavlovian learning,
as has been well-established in other studies (cf. (O'Doherty et al., 2004;
Tobler et al., 2007) and further references therein. Our behavioral control
studies imply the effectiveness of this learning (see below).

Materials and methods

Experiment I

Participants
All 17 male subjects (20–25 year, median age 22) had normal or

corrected-to-normal vision and were screened to exclude those with a
previous history of neurological or psychiatric disease. All gave in-
formed consent and the study was approved by the Research Ethics
Committee of the Canton of Zurich.

Study overview
During the passive fMRI learning task, subjects viewed cue— (erotic)

reward associations on a visual display.We call this experiment the fMRI
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session because we recorded the subjects' brain activation during this
task with functional magnetic resonance imaging (fMRI).

After the fMRI session the same subjects attended a behavioral
session, in a different lab and location. This latter consisted of two phases
containing new cues and old fMRI cues respectively: together these
phases allowed us to assess the stability of any Pavlovian–instrumental
effects over different cues and times.

fMRI task
After completing a consent form and MR safety questionnaire,

participants were invited to read the task instructions. Subjects then
passively viewed the cue–reward associations in Fig. 1 on a computer
screen. Each cue was mostly followed by its respective outcome: an
erotic versus fractal image. (On such trials, this image was selected ran-
domly from a corpus of 10 erotic/10 fractal images, with replacement.)
On a minority 25% of trials this outcome was omitted (see Fig. 1). In
total, subjects were presented each cue 50 times in a random order.
As a convention, we will refer to the cue with erotic associations as
cue A, and the cue with factual associations as cue B.

Each passive trial startedwith a variable ITI with only a fixation cross
visible in the center of the screen. Each trial commenced randomly be-
tween 4 and 6 s after the end of the previous trial. Specifically, the ITI
was drawn from a uniform distribution on the 2 second interval begin-
ning at 4 s after the end of the previous trial. The ITI was followed by the
presentation of one out of two visual cues, at random, for 3 s. The out-
come – erotic or fractal image – was superimposed on this cue for the
final 1.5 s of presentation (a forward or ‘delay’ conditioning procedure).
All rewards were independent samples from the conditional distribu-
tions shown in Fig. 1. In each trial the cue was drawn randomly with
probability 1/2. Cues were counterbalanced between subjects.

Behavioral task
After a 2–4 month interval subjects visited a different behavioral

laboratory ~1 km from the location of the scanner. There were two
Fig. 1. fMRI associative learning. Subjects passively observed stimulus–reward pairings on the co
probability. Cues were counterbalanced over subjects. For a specific and statistically powerful i
fractal images (see text).
phases to the behavioral task inwhich subjects either passively acquired
a new association (phase 1) or re-acquired the old association (phase
2). In each phase they also made instrumental choices from money, as
elaborated below. The written instructions for this behavioral task are
given in the Supplementary Fig. 4.

Old cues (phase 2). Subjects alternated between passive associative
learning blocks and active choice-learning blocks with the cues previ-
ously encountered in fMRI (5, 10-trial blocks of each). The first block
was always passive. These passive or ‘rest’ blocks respected the same
contingencies as the fMRI study but here cue A and cue B were present-
ed simultaneously, on the LEFT and the RIGHT of subjects' computer
screen, randomized trial-by-trial (Fig. 2a). Erotic versus fractal images
were then superimposed on cue A and cue B, respectively. These passive
trials served to renew and sustain previously-established associations.
Active blocks required subjects to choose between ambiguous lotteries
— i.e. lotteries for which subjects had no a priori information about
their probability of success (Ellsberg, 1961). They therefore had to
use trial-and-error to learn the best option, i.e. option B (Fig. 2b
and below). On each trial, each lottery yielded zero or one point
(1 point = 0.2 CHF). Written instructions invited subjects to earn as
many points as possible during active blocks and did not indicate that
erotic or fractal images would be presented: No erotic or fractal images
were presented during active blocks. After selecting one option, subjects
were informed whether or not they had successfully collected a point:
“1” or “0” displayed respectively.

Critically, in each active choice trial the two options were indicated
by cue A and cue B (Fig. 2b). In other words, the subjects had to choose
between the same 2 cues presented on passive trials. If they chose cue A
(previously associated with an erotic picture) they earned 1 point with
probability 0.3, while if they chose cue B (previously associated with an
unrewarding fractal) they earned 1 point with probability 0.7. Thus cue
B pits Pavlovian value against instrumental value: it lacks erotic associ-
ations but has a higher expected return in the choice task.
mputer screen. Cue A (left) predicted erotic images, cue B predicted fractals, bothwith 0.75
ndex of RPE learning signal, we contrasted fMRI responses to the omission of erotic versus



Fig. 2. Follow‐up behavioral task. a. Passive blocks had the same associative contingencies as in Fig. 1 but cues A and Bwere presented simultaneously. b. Passive blockswere followed by active
choice blocks, arranged such that the attractive cue A had lower expected payoff, i.e. 30% probability rather than 70% of earning 1 point (worth roughly USD 0.2). c. In the first session of the
behavioral follow up, these ‘transfer’ cues A′ and B′ play the role of cues A and B described above. Contingencies in this session were otherwise the same as described in panels (a) and (b).
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Selecting either option by button-press instantly magnified the cor-
responding cue on the subjects' screen (Fig. 2b). In this way we opera-
tionalized financially-costly ‘approach behavior’ towards positive cues.
If subjects aim to maximize their financial payoff, then choosing cue B
is optimal and choosing cue A is suboptimal. It is in this specific sense
that we use the term “choice error” throughout this work.

New cues (phase 1). Before completing the above behavioral task
with cues A and B, subjects first completed a phase with new cues A
′ and B′, not present in the fMRI. This phase also comprised 5 passive
blocks alternated with 5 active blocks and had a structure exactly anal-
ogous to that described above. Cue A′ had the same contingencies as cue
A: it was a low-value choice with erotic associations during passive as-
sociative training. Similarly cues B and B′ had identical contingencies. In
this phase subjects could acquire fresh associations to new cues.We call
these new cues “transfer cues” (Fig. 2b) because they enable us to exam-
ine whether the ventral striatal RPE when learning with cues A and B
can predict subjects' choice errors to different cues A′ and B′. Thus, a
subject prone to financially-costly errors under the original cues A and
B should acquire similar impairment to new cues A′ and B′. This
would indicate the stability of a learning mechanism.

Imaging parameters
Images were acquired using a Philips Achieva 3T whole-body scan-

ner with an 8 channel SENSE head coil (Philips Medical Systems, Best,
The Netherlands) at the Laboratory for Social and Neural Systems Re-
search (SNS Lab), Zurich. Subjects viewed the stimuli through a mirror
fitted on top of the head coil. We acquired gradient echo T2*-weighted
echo-planar images (EPIs)with blood–oxygen-level-dependent (BOLD)
contrast (slices/volume, 37; repetition time, 2.47 s). Approximately 350
volumes were collected in each session of the experiment. Scan onset
times varied randomly relative to stimulus onset times. Volumeswere ac-
quired at a +15° tilt to the anterior commissure–posterior commissure
line, rostral N caudal. Imaging parameters were the following: echo
time, 30 ms;field of view, 220 mm. The spatial resolutionof our function-
al data is 3 × 3 × 3 mm. A T1-weighted 3D-TFE high-resolution structur-
al image was also acquired for each participant. For this, the following
parameters were used: TR = 7.4 s, TE = 3.4 s, TI = 876.2 ms (mini-
mum TI delay), flip angle (deg) = 8, FOV = 250 × 250 (×180), matrix
size = 240 (reconstruction matrix), voxel size = 1 × 1 × 1 (1.041 re-
constructed); and acquisition time 5.57 min.

fMRI preprocessing
Statistical parametric mapping (SPM8; Functional Imaging Labora-

tory, University College London) served to spatially realign functional
data, coregister them to the individual anatomical image before normal-
izing to standard MNI space and smoothing with an isometric Gaussian
kernel with a full-width at a half-maximum of 9 mm.

fMRI statistical analysis

Overview. We hypothesized that a stronger tendency to (re)acquire
positive associations in some subjects would lead them to approach
and select the low-value option (i.e. cue A) more often. In addition,
we were interested in whether subjects' vulnerability to (re)acquiring
this ‘approach bias’ is predicted by the ventral striatum learning signals
measured in the fMRI session several months earlier. This would sug-
gest that the potency of their historical learning, as indicated by the
size of their RPE, predicted the (re)acquisition of the approach behavior
at follow-up. We did two analyses: one relatively model-independent,
and one inspired by a classical learning model.

image of Fig.�2
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Model-independent analysis
Weasked if themagnitude of individuals' negative RPE in the ventral

striatum predicted how often they choose the low-return option with
erotic associations in the behavioral follow-up. For each subject, we
used linear regression to quantify this (negative) ‘RPE’: the relative
fMRI BOLD decrements to omitted erotic images versus omitted fractals.
We choose this definition of RPE because these two trial-types are
equally surprising and have identical sensory features between sub-
jects: in contrast non-omission trials have outcomes with different sen-
sory features i.e. women versus fractals. In addition this contrast on
negative RPEs has greater statistical sensitivity for identifyingprediction
errors (see Discussion). This contrast, hereafter RPE, discloses a specific
response to the omission of anticipated rewards at each voxel in the
brain.

First-level design (within-subject).Weused a standard rapid-event-relat-
ed fMRI approach in which evoked hemodynamic responses y to each
stimulus event (cue, outcome, omission) are estimated separately con-
volving a canonical hemodynamic response function with a stimulus
function encoding the onsets for each event. We entered these into a
design matrix along with 6 variables m coding potential movement
confounds. The corresponding general linear model has the form

y ¼ Xθþ ε

with X = [cue A,w+,w−,cue B,f+,f_,m,1]. Here w+ codes the presenta-
tion of an erotic female image: w− codes the omission of this image
(similarly for cue B and fractal images f). The error ε is modeled in the
Fig. 3. Neuronal responses during associative learning predicted behavioral approach in follow
across the two phases. b.More negative ventral striatum responses to reward omission during p
approach behavior towards cue A. b. This neuronal response also predicted more costly appro
pointed to anatomical specificity: ventral striatum alone survived peak‐level whole‐brain corre
standard way as an autoregressive 1 process. In Fig. 3 we consider the
contrast of omitted erotic versus fractal images

v ¼ cT XTX
� �−1

Xy

where c = [0 0 1 0 0 − 1 0 0…].

Second-level design (between-subject).We used the standard summary-
statistic approach for inference. Namely, we treated subject i's first-level
contrast image vi as an observation. To examine its relation to subjects'
approach behavior we used a simple linear regression.

v ¼ Zϕþ ε

where Z = [1,b], b is the total number of financially-costly approaches
and the i.i.d. ε term now describes unexplained between-subject
variability.

Model-dependent analysis
In a separate and complementary model-based analysis, we

attempted to predict subjects' behavioral error rate from the scale of
prediction errors defined formally (Rescorla andWagner, 1972). In par-
ticular we initialized to 0 two Rescorla–Wagner (RW) learning models
corresponding to the cue A—reward association and cue B—fractal asso-
ciation. These learning models have the form ηt + 1 = ηt + αδ, where
δ = (x − ηt) is the prediction error and prescribes how each cue's pre-
dictive associationwith x is updated from trial t to trial t + 1.While RW
was initially conceived as a model for learning the predictive value of a
‐up session at a later date. a. Group average behavioral error rates are constant within and
assive associative learning predictedmore costly behavioral choices at follow‐up, i.e. more
ach towards cue A′, encountered for the first time at follow‐up. d. A whole brain analysis
ction.

image of Fig.�3
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cue, in our setting it can equivalently be understood as a model for
learning the transition probabilities from cue to any outcome state
(e.g. a fractal). Hence we can apply the samemodel to both the reward
associations acquired by cue A and the non-reward associations of cue
B. We distinguish these two learners by means of a superscript ηtr for
the erotic reward-predictive cue A, and the superscript ηts for the
fractal-predictive cue B. The presence or absence of the outcome on
any one trial was coded as x = 1 and x = 0, respectively. Rather than
fitting the learning-rate parameter α – which required the assumption
that there is only one learning rate in all brain regions – we performed
4 analyses, each assuming a different setting for α and covering the
range of plausible settings of α i.e. 0.2, 0.4, 0.6, and 0.8.

Each analysis proceeded as follows.We trained ηtr and ηts on the same
trial-by-trial stimuli presented to each subject on the visual display as
they lay in theMRI.We then introduced 2 columns in the each subject's
first level fMRI design matrix as parametric modulators locked to
the time of feedback. These predictors contained the positive/negative
reward prediction errors which govern the dynamics of ηtr, cue A's
reward association. We analogously introduced two columns to
encode positive/negative prediction errors underpinning the dynamics
of ηts, cue B's fractal association. These four predictors may be written
as δ+r ,δ−r ,δ+s ,δ−s where, for example, the column δ+r represents the
value of the positive reward prediction error on any trial in which
δr N 0, and is 0 otherwise. Taken together, these four predictors specify
the magnitude of a prediction error for every trial of the fMRI session.
The design matrix also included predictors of no interest coding
subjects' head movement. Estimating this model gave us the linear
combination of δ+r ,δ−r ,δ+s ,δ−s which best fits the fMRI data to each
voxel × subject. We use the vector β to denote these best-fitting
parameters.

We askedwhether negative reward prediction errors δ−r versus neg-
ative state prediction errors δ−s successfully predicted subjects' error
rate at behavioral follow-up. This quantity was estimated for each
voxel × subject via the contrast cTβ ¼ βδr−−βδs− (where subscripts on
β indicate the column of the design matrix to which each parameter
corresponds). As previously mentioned, we used simple linear regres-
sion in a second level model to explain between-subject variation in
cTβ in terms of behavioral error at follow-up.

Experiment II

Participants
All 49 male subjects (19–28 year, median age 21) gave informed

consent andwere invited to read the task instructions. 24were assigned
to Treatment 1; 25 to Treatment 2.

Behavioral tasks
The purpose of this studywas to provide a between subject confirma-

tion that Pavlovian conditioning had on average impact on financially-
costly approach behavior. Participants' earnings were calculated and
paid out at the end of the experiment. Subjects learned on average
10.65 CHF, in addition to the show-up fee of 15 CHF. For both treat-
ments, the initial passive conditioning session was performed on the
same day in the behavioral lab and not under fMRI. Treatment 1 – the
associative treatment – was otherwise identical to the experiment
described in Figs. 1 and 2 while Treatment 2 – the non-associative
treatment – did not involve associative learning during any passive trials
in any session (only the erotic/fractal outcomes were presented). This
ensured that non-specific sexual arousal was the same while the possi-
bility of associative learning was eliminated.

Awareness measure
Subjects used the mouse to rate on a continuous scale, whether cue

A or cue B was more associated with women in the passive ‘rest’ trials.
Subjects also rated whether cue A or cue B was more associated with
points in the active choice trials. These responses were transcribed
onto the continuous[0,1] interval and coded such that a response of
0.5 indicated subjects had not detected any difference between the
cues; responses closer to 1 indicated that subjects were correctly
aware of the contingency; and responses closer to 0 indicated that sub-
jects had a false belief about the contingency.

Results

Experiment I

How many choice errors did subjects commit in the active choice
task? On average they chose the incorrect low-return cues A′
(in phase 1) and A (in phase 2) roughly 40% of the time (Fig. 3a), and
the aggregate error rate does not differ between the original fMRI cues
and the transfer cues (one sample t-test of the difference between the
mean errors in fMRI and transfer cues, p = 0.93). Interestingly, the
error rate also does not change much across the 5 blocks of each
phase, indicating that subjects learned behavioral contingencies in the
first block and their ability to make correct choices did not improve on
average. For both phase 1 and phase 2 the difference between the first
block and the fifth block was not significant (one sample t-test of the
difference between the number of errors in the first versus the last
block; phase 1: p = 0.67; phase 2: p = 0.12), indicating a stable aggre-
gate error rate across blocks.

Model-independent analysis of prediction error

The aggregate error rate described above hides substantial individu-
al differences in the proneness to make choice errors. We hypothesized
that individuals with more potent associative learning under fMRI –
indexed by greater RPE – would approach the low-return cues (A and
A′) more often, sacrificing more money. To predict behavior from
brain responses during passive associative learning, we correlated the
number of times each subject chose cue A – their “behavioral error
rate” in phase 2 –with their neuronal RPE, averaged within an anatom-
ical mask of the ventral striatum. Fig. 3b shows that subjects with larger
negative RPEs to (erotic) reward omission committed more behavioral
errors (p = 0.004, ρ = −0.66, n = 17) during the five blocks of phase
2. Moreover, this correlation between the negative RPEs associated
with erotic reward omission and choice errors prevails in all five
blocks. In fact, the predictive power of RPEs even increased over the 5
blocks (the correlation in each block of phase 2 was: ρ1 = −0.43,
ρ2 = −0.58, ρ3 = −0.62, ρ4 = −0.63, and ρ5 = −0.66): it was
separately significant at the α = 0.05 level in all but the first block
and was most significant in the final block (p = 0.004, n = 17; note
that this p-value survives a conservative Bonferroni correction for 5
tests over the 5 separate blocks). This suggests that the initial learning
signal during fMRI can predict subjects' asymptotic approach bias.
Recall that cue A′ has formally identical contingencies to cue A, but is
encountered for thefirst time at the beginning of the behavioral session.
If a temporally stable learning mechanism is really at play, individuals
who learnt potent Pavlovian associations to cue A during fMRI should
more readily learn Pavlovian associations to the new cue A′, encoun-
tered for the first time at the behavioral session. By hypothesis,
these subjects should therefore also come to approach A′ more often.
We therefore asked if subjects' RPE during the associative learning
task in the fMRI session with cue A could prospectively predict how
readily a subject would acquire a financially-costly preference for cue
A′ in the active choice task. To do thiswe correlated subjects' preference
for the low-return gamble A′ with their RPE from the fMRI session and
found a significant relationship, p = 0.01, ρ = −0.6, and n = 17
(Fig. 3c). The correlation in each block of phase 1 was: ρ1 = −0.35,
ρ2 = −0.57, ρ3 = −0.62, ρ4 = −0.61, and ρ5 = −0.60. This correla-
tion was separately significant at the α = 0.05 level in all but the first
block. We therefore defined a single aggregate measure of each



6 J.R. Chumbley et al. / NeuroImage 89 (2014) 1–9
subject's behavioral approach i.e. the number of A choices + the num-
ber of A′ choices.

We used simple linear regression to examinewhether this statistical
relation between aggregate behavioral measure and negative RPE
existed in other brain regions. In a whole brain, between-subjects
analysis we regressed RPE – the BOLD decrement following reward
omission – on aggregate error. Using stringent peak-level FWE correc-
tion for multiple comparisons (Worsley et al., 1996) only one region,
centered within the left ventral striatum, significantly correlated with
this error at the 0.05 level: MNI coordinates (−9, 14, −11), see Fig. 3d.
Model-dependent analysis of prediction error

We observed a statistically significant relation between choice er-
rors and negative prediction errors, as defined formally, at p b 0.05
set-level inference within a small volume mask of the ventral striatum,
defined anatomicallywith a feature-inducing threshold of p = 0.01 un-
corrected. This significant result held for learning rates α of 0.6 and 0.8,
but not 0.2 and 0.4. This “set-level” effect carries the interpretation that
there are more sub-regions within the ventral striatum displaying a re-
lation between βδr−

−βδs−
and choice error than would be expected by

chance. We also examinedwhether the scale of positive reward predic-
tion errors δ+r versus positive state prediction errors δ+s could success-
fully predict individual differences in behavioral choice error at
follow-up. We found that positive reward prediction errors, relative to
positive state prediction errors, i.e.βδrþ−βδsþ, significantly related to sub-
jects' behavioral success at follow-up (again p b 0.05 set-level inference
within a small volume mask of the ventral striatum, defined anatomi-
cally, as described above). This latter result held for a learning rate of
0.4, 0.6, and 0.8, but not 0.2.

It is noteworthy that these ventral striatum δ parameters have a
weaker statistical relation to behavioral error than the more qualitative
notion of negative prediction error used in the preceding analysis. That
is, formally-defined δ parameters predict behavioral choice errors only
at a more liberal statistical criterion: small-volume versus whole-brain
corrected and at lower feature-inducing threshold corresponding to
p = 0.01 uncorrected. In addition, we should strictly penalize this
model-based analysis for the greater false-positive probability resulting
from multiple comparisons over different settings of α. Conversely, as
presented in the supplementary material, this model-based analysis re-
vealed other regions outside of the ventral striatum whose δ activity
correlated with behavioral choice error rate under stricter whole-brain
correction. This contrasts with the preceding analysis, in which activa-
tion appeared more specific to the ventral striatum.
Cue-locked “reward anticipation” also predicts error

We also looked for regions in which BOLD responses to the presen-
tation of the reward-predictive cue, rather than the outcome, can pre-
dict behavioral errors. Such responses can be interpreted as reward
anticipatory responses that follow from prior learning. They are also
predicted from models such as TD learning. In particular, this ‘reward
anticipatory’ activation for each subject was defined as the difference
in BOLD responses to the erotic-predictive CS versus the fractal-
predictive CS. In a second-level analysis within the ventral striatum,
defined anatomically, we observed three regions in which this anticipa-
tory activation significantly predicted the number of behavioral errors
(one in the left ventral striatum, two in the right ventral striatum).
All exceeded both cluster and peak level significance at the level. The
cluster inducing threshold required for the former inference was
corresponded to p = 0.001 uncorrected. Increasing to a whole brain
search, we found one highly significant, 304-voxel cluster in the
dorsomedial prefrontal cortex centered at [3 35 49] in MNI coordinates,
see supplementary Fig. 1.
Experiment II

We ran two behavioral control treatments to assess whether asso-
ciative learning in particular, rather than some non-specific factor
such as sexual arousal, was responsible for the behavioral approach
bias observed at follow-up. These controls also examined whether sub-
jects' awareness of the positive sexual associations influenced their bias.
Control Treatment 1 (n1 = 24) recapitulated the full fMRI/behavioral
experiment above: prior passive training followed by intermingled pas-
sive and active blocks. Control Treatment 2 (n2 = 25) was identical in
every respect except that subjects never saw predictive cues A, A′, B,
and B′ in any passive trial: They only saw erotic or fractals images in
these trials (i.e. just the ‘outcome’). Cues A, A′, B, and B′ still labeled
the response options during active trials. Based on the fMRI study we
had a plausible a priori hypothesis about the direction of the behavioral
effect and therefore used one tailed tests for the behavioral control
study. Without any positive associations for cue A in this control treat-
ment, we expected less approach towards this cue during active choice
trials. A two-sample one-sided t-test confirmed that on average subjects
chose cue A less in the non-associative Treatment 2 than in the associa-
tive Treatment 1, p = 0.022 (n1 = 24,n2 = 25). Similarly, a two-
sample one-sided t-test confirmed that subjects on average chose cue
A′ less in the non-associative Treatment 2 than in the associative Treat-
ment 1, p = 0.043 (n1 = 24,n2 = 25). The average error rate over
blocks for cue A in the associative treatment was 42%, compared with
32% in the non-associative treatment. For cue A′ thiswas 41%, compared
with 34%. Togetherwith the analyses below, these results establish that,
at the group level, associative learning influences approach behavior.

Time dynamics

We then asked whether the time dynamics of choice errors differed
between the two treatment groups of the behavioral control study. To
do this we used multilevel generalized linear regression to predict
the number of errors in each 10-trial block in terms of the following
predictors 1) Treatment condition — a binary indicator variable
named ‘associative’ which equal to 1 for the associative treatment and
0 for the non-associative treatment and 2) Time— a parametric variable
named ‘block’ ranging from 1,…,5 to indicate the progression of time
over the 5 blocks. Critically we included the associative ∗ block interac-
tion, which quantifies differences between the linear slopes in the
associative versus non-associative treatment. Our statistical framework
accommodates repeated-measures i.e. correlated choices within-
subject (Gelman andHill, 2007): it permits each subject their own inter-
cept μi thereby modeling any unobserved subject-specific attribute
which influences baseline error. Assuming these baseline error-rates μi
are drawn from a Gaussian population distribution, this gives Eq. (1)

P Yij ¼ yij
� �

¼ Binomial 10; logit−1 ηij
� �� �

ηij ¼ μ i þ β1blockij þ β2associativeij þ β3blockij � associativeij
μ ieN μ;σ2

μ

� � ð1Þ

where yij is the subject i's error rate in the jth block and ranges from 0,
…,10, capital Yij is the corresponding random variable, logit−1 is the
inverse logistic function and X ~ N(μ,σ2) denotes that X is distributed
according to a Gaussian probability distribution with mean μ and
variance σ2.

In analogy to our preceding analyses, we estimated this model
separately for choice errors made towards cue A and choice errors
made towards “transfer cue” A′. There was no statistically significant
difference between the linear time dynamics in the context of the
“transfer cue” A′. In contrast, there was a statistically significant interac-
tion in the context of cue A, indicating a more negative slope governing
the dynamics of choice errors in the associative versus non-associative



Fig. 4. Error rates in the behavioral control study. Time dynamics of error across thefive 10‐trial blocks for the non‐associative treatment (dashed lines)—when therewere rewards during
rest trials but no predictive cues— and associative treatment (solid lines), when cues and rewards were paired during rest trials. a. Subjects chose cue A less on average in the non‐asso-
ciative treatment than in the associative treatment. In addition there was a significant difference in the slope of errors, with the associative treatment starting at a higher error rate and
declining to a level comparable to the non‐control group. See the main text for the corresponding statistical tests and interpretation. b. Subjects similarly chose cue A′ less on average
in the non‐associative treatment, but there was no significant time trend.
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treatment, see also Fig. 4a (p = 0.0011, n = n1 + n2 = 49). The
gradual extinction effect suggests that subjects weremotivated to learn.

Awareness

After the experiment, we examined subjects' awareness of the pas-
sive and choice contingencies. A one-sided t-test confirmed that sub-
jects were correctly aware of the choice contingency (p = 0.0023,
n1 = 24) and the cue-reward contingency (p = 4 × 10−8, n1 = 24).
Interestingly, unlike the RPE learning signal extracted from the fMRI,
approach behavior could not be predicted from subjects' correct aware-
ness that cue A had erotic associations (the correlationwas insignificant
at p = 0.42, n1 = 24). This suggests that awareness of a cue's positive
associations does not protect an individual from approaching it at cost.

Discussion

Simple Pavlovian learning does not provide a full account of even an-
imal choice learning and is often viewed as just one factor influencing
behavior (Seward, 1949; Thorpe, 1956; Dayan and Balleine, 2002;
Dayan et al., 2006; Talmi et al., 2008; Guitart-Masip et al., 2011; Prévost
et al., 2012). More sophisticated learning capabilities, each with their
own quirks, underpin our habitual and goal-directed actions: these
systems may not even require “prediction error” mechanisms. Given
human cognitive sophistication, a key question is whether simple
Pavlovian mechanisms influence human choice at all. We showed that
individual differences are important. Specifically, functional variation
between subjects in the ventral striatum as they learned to predict erot-
ic events could explain a stable tendency to acquire and reacquire
financially-costly behavior. Because this behavior persisted despite the
consequences, it resembled themyopic, ‘model-free’ Pavlovianbehavior
observed in animal feeding (Domjan et al., 2000; Locurto, 1981;
Rosenthal and Matthews, 1978; Sanabria et al., 2006; Williams and
Williams, 1969), sexual and social behavior (Domjan et al., 2000). Our
results therefore revive one classical perspective on the neurobiology
of suboptimal decision-making: simple instinctive heuristics like
‘approach things which predict reward’, which were adaptive on
average during natural selection, can easily leave us vulnerable to ex-
ploitation. Interestingly, subjects' awareness of a cue's misleading posi-
tive associations did not protect them from exploitation, echoing the
claim that much of human choice behavior is under automatic stimulus
control (Bargh and Chartrand, 1999).
Our task resembles both ‘Pavlovian–instrumental-transfer’ (PIT)
paradigms and ‘negative auto-maintenance’ paradigms (Balleine,
2005; Guitart-Masip et al., 2010; Prévost et al., 2012; Sanabria et al.,
2006; Talmi et al., 2008). The former paradigm entails separately train-
ing a passive Pavlovian cue–reward association and an instrumental
action–reward association, then comparing responses in the presence
versus absence of the ‘irrelevant’ Pavlovian cue in extinction. In the
latter paradigm, Pavlovian and instrumental learning unfold concur-
rently in direct competition: a Pavlovian stimulus predicts reward
only if the subject does not express a Pavlovian response. Our paradigm
combines elements of both of these paradigms.

Themain focuswithin our fMRI analysis is a quantitywe refer to as the
reward prediction error (RPE).More specifically our ‘model-independent’
analysis looked at a BOLD reduction in response to the omission of a likely
reward. This is related to a RPE, but doesn't fully capture the RPE idea
which varies over time (i.e. implements trial-by-trial learning) and also
occurs on receipt of a reward that exceeds expectation, i.e. positive pre-
diction errors. While positive prediction errors – e.g. as defined by
Rescorla–×Wagner or TD learning – certainly occur in our task, they
must be smaller inmagnitude. This is a consequence of the contingencies
in our design. Specifically, Rescorla–Wagner predicts that if a subject has
learned that a reward will occur with 50% probability, then positive and
negative prediction errors elicited on each trial should have the same
magnitude, on average. Conversely if subjects expect rewardwith a prob-
ability higher than 50% – as in our case of 70% – then negative prediction
errors will be larger than positive prediction errors. Thus our paradigm
has more statistical sensitivity to identify effects in the domain of
reward-omission, i.e. negative prediction errors. Additionally, there is
not a satisfactory model-free way to quantify positive reward prediction
errors in tasks such as ours. This is because positive reward prediction
errors at the time of the outcome are typically confounded with the
presence of sensory features of the outcome. For these reasons our
model-independent analysis restricted attention to negative prediction
errors, despite this not capturing all the qualities of the RPE. Interestingly,
amodel-dependent definition of prediction error yieldedweaker correla-
tions with choice error than this simple qualitative definition.

Future work might benefit from measuring subjects' sensitivity to
the unconditioned erotic rewards (for example by measuring arousal/
affective reactions). Individual differences in this sensitivity might ulti-
mately explain variation in the strength of Pavlovian bias over subjects.
For example an individual with greater reward sensitivity should, in
theory, learn differently: In reward prediction error theories, reward
sensitivity should directly control the asymptotic value assigned to

image of Fig.�4
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predictive cues, and therefore themagnitude of evoked prediction error
as we measured it. The measurement of conditioned response ampli-
tude (e.g. pupil reactions or another measure of conditioned arousal)
would similarly augment the picture we present here. Larger Pavlovian
bias should be expressed in higher amplitudes of these conditioned
responses. Previous literature has repeatedly shown that the ventral
striatum tracks Pavlovian learning effects (e.g. LaBar and Phelps, 2005;
O'Doherty et al., 2004).We have therefore used responses in the ventral
striatum as a proxy for Pavlovian learning. However, we should
acknowledge that independent evidence of Pavlovian conditioning –

e.g. changes in affective ratings for the cues, pupilometry or GSR –

would bolster this interpretation. Relying on the ventral striatum
activity as a means of inferring Pavlovian learning may be reasonably
criticized if such activity reflects functions other than learning per se.
The absence of independent-autonomic or behavioral-evidence for
Pavlovian learning is therefore a noteworthy limitation in our experi-
mental design. Further studies with appropriate behavioral measures
will be needed to further support the claim that Pavlovian associations
are underpinning the observed effects.

We have interpreted the relation between the ventral striatal BOLD
responses and financially-costly choice in terms of a striatal learning
mechanism which causes approach behavior i.e. model-free condi-
tioned responses. It nonetheless remains possible that the ventral stria-
tum predicts financially-costly choice in terms of a goal-directed or
‘model-based’, not a ‘model-free’, mechanism as follows. The ventral
striatum responses reflect the acquired value of cue A, then subjects
who value cue Amore select it more at follow-upwith the nonpecuniary
objective or goal of magnifying it, because they like it. If this were true,
then the relation between the ventral striatum BOLD responses and
financially-costly choice would be particularly robust under the follow-
ing conditions: 1) if subjects were unmotivated or slow to learn the fi-
nancially optimal choice and/or 2) if they understood the financial
trade-off but were willing to accept lower remuneration in order to
see cue A magnified. Future work might assess whether subjects value
non-financial aspects of the outcome. For example subjects may derive
pleasure from viewing cue A at highmagnification per se, because of its
conditioned value. If they are willing to pay/forgo money in order to
view cue A at high magnification, their behavior might be rationalized,
i.e. might not be erroneous. The fact that subjects were explicitly
aware of the instrumental contingencies in the post-hoc debriefing sug-
gests that their choicewas biased over and above instrumental learning
of the financial costs.

Our control experiment demonstrates that in the absence of any
“Pavlovian” biases, subjects choose the wrong cue 30% of the time,
compared with 40% in the presence of Pavlovian biases. This implies
that choice errors due to Pavlovian influences are, on average, around
10%. We will next briefly discuss potential explanations for high base-
line errors, namely that some subjects did not understand the task or
did not care about the rewards.

One possibility is that subjects erroneously chose the low value cue
because they erroneously expected to gain information about its
value. In fact, our task was designed to ensure that exploration was fu-
tile. Subjects were instructed “You will have two options. You can
earn one point by selecting the correct option. Otherwise you will re-
ceive zero points”, see supplementary Fig. 4. They therefore knew that
there was exactly one correct response on each trial and could always
infer the counterfactual outcome without resorting to exploration.
This design feature was intended to exclude the alternative hypothesis
that the ventral striatum in fact predicted individual differences in the
preference for exploration versus exploitation (O'Doherty et al., 2004;
Wittmann et al., 2007). It is possible that, despite this instruction,
some subjects continued to explore the less valuable option under the
false belief that they were gaining information about its value that
could not be derived counterfactually. This misunderstanding would
not be specific to any one of our experimental conditions, and could po-
tentially explain high baseline errors throughout. Importantly however,
we see no reason to suspect that individual differences in the ventral
striatal activation predicted individual differences in the incomprehen-
sion of this one feature of the task instructions. Thus, it does not provide
a compelling alternative explanation for our main fMRI results.

Another possibility is that high baseline errors are an expression of
the matching law (Killeen, 1972; Poling et al., 2011), which states that
the choice rate (for cue A versus cue B) equals the relative reinforce-
ment rate for these two cues. However, as reported in the supplementa-
ry material, we did not find evidence that subjects' behavior respected
the matching law. Finally, some subjects may simply have cared less
about financial outcomes, which would provide an alternative explana-
tion for errors. This opens the possibility that those subjects showing
larger fMRI omission responses during Pavlovian conditioning also
care less about the financial outcomes and were less motivated to
learn the correct choice. If this were true, then the increased error rate
in these individuals reflects greater randomness in their behavior rather
than a specific targeted approach of cue A. In general it is difficult in our
paradigm to dissociate subtle changes in approach behavior from subtle
changes in the randomness of subject's choice behavior. Specifically, any
change which pushes a subject away from deterministic, money-
maximizing behavior (choosing cue B deterministically) but not as far
as deterministic approach behavior towards cue A may be difficult to
dissociate from simple increases in randomness. This difficulty mirrors
the difficulty encountered when trying to distinguish increases in
exploration from increases in randomness due to other factors.

Widespread practical consequences would follow from the conclu-
sion that human choice behavior is under automatic stimulus control.
For example, recent behavioral work appears to implicate uncondi-
tioned Pavlovian responses in consumer behavior (Bushong et al.,
2010). From our perspective, it is relevant that advertisements often
pair some rewarding (e.g. erotic) stimulus (Gresham and Shimp,
1985) with a product whose consumption contradicts our interests
and goals. Our results also generate new hypotheses about defective
decision-making in the clinic. For example, ‘behavioral’ addictions or
‘compulsions’ (Parashar and Varma, 2007; Potenza, 2006; Stein et al.,
2010) often involve a self-punitive appetite for sex, pornography, gam-
bling/gaming or food which persist despite excessive physical, mental,
social and/or financial consequences. While ventral striatal DA has
been implicated in virtually all stages of drug addiction, including asso-
ciatively ‘cued’ drug consumption (Parashar and Varma, 2007), we are
largely ignorant of the underlying pathogenesis in non-substance-
related addictions. Our results suggest that a ventral striatal DA learning
mechanismmay also help explain these conditions, suggestingwhy vul-
nerable individuals tend to (re)acquire addictive dispositions to multi-
ple behaviors and substances (Cunningham-Williams et al., 1998;
Petry et al., 2005).
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