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Abstract

Adaptive behavior often exploits generalizations from past experience by applying them judiciously in new situations. This
requires a means of quantifying the relative importance of prior experience and current information, so they can be
balanced optimally. In this study, we ask whether the brain generalizes in an optimal way. Specifically, we used Bayesian
learning theory and fMRI to test whether neuronal responses reflect context-sensitive changes in ambiguity or uncertainty
about experience-dependent beliefs. We found that the hippocampus expresses clear ambiguity-dependent responses that
are associated with an augmented rate of learning. These findings suggest candidate neuronal systems that may be
involved in aberrations of generalization, such as over-confidence.
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Introduction

Successful behavior in new situations often requires us to apply

‘rules-of-thumb’. However, acquiring and applying abstract rules

from limited experience presents a fundamental computational

problem [1]: in which both over- or under-generalization must be

avoided [2,3,4,5,6]. Despite their importance, little is known about

how neuronal systems learn these rules, and how the delicate

balance between past and present information is maintained.

Evolutionary arguments suggest that the use of previously learned

rules when generalizing to new situations increases adaptive fitness

by optimizing behavior [7]. This raises the key question of whether

and how generalization is optimized [8]. In this work, we examine

whether human subjects combine previously learned rules and

current information in an optimal way and identify the brain

systems that underlie this combination. Using Bayesian learning

theory to specify optimal generalization, we looked for its neural

correlates. In particular, we drew on existing evidence that points

to the hippocampus as a key structure that is implicated in learning

the specifics of a new situation, when previously learned rules may

not apply [9,10].

Probabilistic inference in a natural environment is confounded

by multiple sources of uncertainty [11,12,13,14], including

objective randomness and subjective ignorance [14]. Uncertainty

is a key concept here because the confidence about prior beliefs

should be weighed against the confidence about new information,

when deciding whether to generalize those beliefs to a new

situation. Classical reinforcement learning models (e.g. [15,16]) do

not represent uncertainty or use generalization to guide learning

and behavior: these schemes simply learn the expected value of

action-states and only prosper in environments where the current

state is sufficient to specify a successful action: see [17] for a

critique and extension. Having said this, several other RL schemes

are based on some form of non-probabilistic function approxima-

tion and therefore support generalization (see Chapter 8 in [18] for

discussion and recent RL approaches in neuroscience that

consider generalization in the spatial [19] and temporal [20]

case). While recent RL developments in neuroscience incorporate

some notion of uncertainty [21], learning and generalization are

typically non-probabilistic. In this work we ask if learnt

generalizations are accompanied with due uncertainty [22], as

prescribed by probability theory.

At the behavioral level, human subjects readily abstract

probabilistic rules and use them to generalize [8]. Furthermore,

they can distinguish different sources of uncertainty: the

unavoidable or irreducible randomness of certain events versus

subjective ignorance about the world [12,13,23,24,25]. The latter

resembles the concept of subjective ambiguity in economics and

represents uncertainty about objective risks. For example, the risk

(or irreducible randomness) associated with a fair coin toss is high

(50:50); however, there may be subjective ambiguity as to whether

the coin is itself fair. This paper examines the function and

mechanisms of generalization in the face of ambiguity. While there

are good reasons to restrict the term ambiguity to complete

ignorance [26], we use the term more inclusively to denote the

level of uncertainty about the outcome probabilities. This is akin to

estimation [14] or second-order [26] uncertainty (i.e., uncertainty

about uncertainty). Ambiguity is subjective and reference-depen-

dent: it ranges from complete ignorance to near certainty and,

crucially, can be reduced by generalization in a Bayes-optimal

fashion [8]. In other words, if subjects consider their current

situation in the light of past experience, they can exploit

similarities between the past and present to reduce their ambiguity

[27,28]. In our example, ambiguity about a new coin will be
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reduced by observing the random behavior of similar coins. This

ability to generalize over similar situations is seen readily in

behavior and learning [8,14].

In this study, we examined the neuronal correlates of

generalization with a special focus on the hippocampus: The

hippocampus is involved in generalization [29,30,31,32,33,34]

and shows activations that are sensitive to objective uncertainty or

risk [23,35]. In this paper, we asked if hippocampal responses also

report subjective uncertainty or ambiguity that changes with

experience. Specifically, we tested for ambiguity-dependent

hippocampal responses, when probabilistic nature of outcomes

had to be learned. Furthermore, we hoped to show behaviorally

that learning rates were greater in contexts that had more

ambiguity. We addressed these questions using a model of our

experimental task and, tested whether Bayesian updates or

learning could explain behavioral and neurophysiological respons-

es, as measured with fMRI.

Materials and Methods

Subjects and procedure
Nineteen subjects (age 19–31, 11 female) were recruited from

the UCL psychology Dept subject pool. All subjects gave informed

consent, before reading a brief description of the task which was

then performed under fMRI. The study protocol was approved by

the local UCL ethics committee.

Image acquisition and analysis
Image acquisition. Images were acquired on a 3 T Allegra

head scanner (Siemens Medical Systems) with a head coil for RF

transmission and signal reception. We used BOLD signal sensitive

T2*-weighted transverse single-shot gradient-echo echo-planar

imaging (EPI; flip angle 90u; bandwidth BW, 3551 Hz/pixel;

phase-encoding (PE) direction, anterior–posterior; bandwidth in

PE direction BWPE, 47.3 Hz/pixel; TE, 30 ms; effective TR,

2600 ms). An automatic 3D-shim procedure was performed at the

beginning of each experiment. Each volume contained 40 slices of

2-mm thickness (1-mm gap between slices; field of view, 1926192-

mm2; matrix size, 64664). Sensitivity losses due to susceptibility

artifacts were minimized by applying a z-shim gradient moment of

0.4 mT/m, a slice tilt of 30u, and a positive PE gradient polarity

[36], [37]. Each subject underwent one scanning session, with

three breaks. The task was self-timed, and therefore the duration

of each session depended on the subject. The first five volumes of

each session were discarded to ensure steady-state longitudinal

magnetization.

Whole-brain anatomical scans were acquired using a modified

driven equilibrium Fourier transform (MDEFT) sequence with

optimized parameters [38]. One hundred seventy-six sagittal

partitions were acquired with an image matrix of 2566224

(read6phase) and twofold oversampling in read direction (head/

foot direction) to prevent aliasing (isotropic spatial resolution 1-

mm;15u; TR/TE/TI, 7.92 ms/2.4 ms/910 ms; BW, 195 Hz/

pixel). Spin tagging in the neck was performed to avoid flow

artifacts in the vicinity of blood vessels. The flip angle of the

tagging pulse was chosen to be 160u to account for B1 losses in the

neck. Special RF excitation pulses were used to compensate for B1

inhomogeneity of the transmit coil in superior/inferior and

anterior/posterior directions. Images were reconstructed using a

standard 3D Fourier Transform, followed by modulus calculation.

Image analysis. Functional imaging data were analyzed with

statistical parametric mapping (SPM8; Wellcome Trust Centre for

Neuroimaging; www.fil.ion.ucl.ac.uk/spm). EPI images were

generated off-line using a generalized reconstruction method

based on the measured EPI k-space trajectory to minimize

ghosting. Motion-corrected images were co-registered to the

individual’s anatomical MDEFT image and spatially normalized

to the Montreal Neurological Institute T1 reference brain

template (re-sampled voxel size: 26262-mm).

The experimental paradigm
While our goal was to identify domain-general computational

processes, the paradigm was framed as a social inference task:

Subjects were told that two groups of thirty individuals had

completed a marketing survey. Subjects were then asked to guess,

over ten consecutive trials, whether each individual would choose

a ‘blue’ or ‘purple’ product. Subjects were told they would be paid

‘in proportion to the number of correct guesses’ and that the two

groups were ‘geographically and economically unlike one

another’. Trial cues (individuals) were faces from the Sterling

data-set, whose group membership was indicated by the symbol ‘*’

or ‘o’ (see Figure 1). Each trial comprised the following sequence:

1) an individual’s face was presented along with the symbol

indicating their group membership; 2) the response options (blue

and purple squares) were then presented, after which 3) the subject

responded and 4) received feedback about whether their guess was

correct or incorrect. The timeline for a single trial is shown in

Figure 1. If subjects did not guess within one second, they were

shown the instruction ‘ACT FASTER!’. The subject’s guess was

highlighted until feedback was delivered. Correct guesses were

signaled with an auditory beep (500 milliseconds of 500 Hz sine

wave) and accumulated in a score bar at the bottom of the screen.

Incorrect guesses were indicated by a 500 millisecond burst of

white noise (with no increase in their score).

Unbeknown to subjects, individuals from one group had similar

preferences, while the other group had more between-individual

variability. This meant that subjects had to make guesses about

choices in two distinct contexts established by the group an

individual belonged to: in the generalization context (GC), all

individuals chose ‘purple’ with probability p~0:8. In the ambiguous

context (AC), ‘blue’ was probabilistically chosen (p~0:8) by half of

the group members and ‘purple’ (p~0:8) by the other half. To

reiterate, subjects were presented with the same face ten times and

had to guess whether the individual preferred blue or purple. Each

individual was identified as belonging to one group or the other.

Every individual preferred one color that was chosen 80% of the

time. In the generalization context, all group members preferred

the same color, while in the ambiguous context, individual group

members preferred blue or purple with equal probability. In both

contexts, subjects could learn about any given individual over ten

trials.

The generalization context therefore contained a probabilistic

rule prescribing the best guess, even in the absence of learning

about an individual’s preferences. Conversely, in the ambiguous

context, subjects had to learn about individual preferences because

their group membership provided no clues about what they would

Author Summary

Intelligent behavior requires flexible responses to new
situations, which exploit learned principles or abstractions.
When no such principles exist, the imperative is to learn
quickly from scratch. Behaviorally, we show that subjects
learn action-reward relationships in a manner that enables
them to generalize rules to new situations. Our fMRI results
show that when subjects have no evidence that such a rule
exists, medial temporal lobe responses (that reflect
uncertainty) predict their augmented learning.

Learning and Generalization under Ambiguity
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preferentially choose. Trials were arranged into blocks, in which

the same individual was presented for ten consecutive trials. The

blocks alternated between AC and GC, with a new individual

(face) for each block. This resulted in 30|10|2~600 trials, for

thirty individuals, presented ten times for two groups.

The blue and purple options were presented with equal

probability on the left and right of the screen on each trial.

Individuals (faces) were randomly reassigned to either group,

between subjects. All subjects experienced the same feedback

contingencies (with randomly reassigned cues). Subjects had three

short breaks during the task: for each they were first cued

‘PLEASE HAVE A SHORT REST AND RELAX’ before being

prompted to restart thirty seconds later: ‘OK! PLEASE PRESS

ANY KEY TO CONTINUE’.

Bayesian modeling versus conventional fMRI analyses
Bayesian learning theory predicts that subjects should learn

more quickly about a new individual from the ambiguous group,

relative to an individual from the generalization group. This is

based upon the assumption that subjects are making Bayes-

optimal guesses using a notion of group or context. The increase in

learning rate with higher levels of ambiguity is related to increases

in learning rate in situations with a high degree of volatility [39]

(see below). At the neuronal level, we predicted that increases in

learning rate would selectively engage hippocampal processing in

the ambiguous context. In other words, hippocampal activation

should track changes in ambiguity about an individual’s preference

as it alternates between AC (high ambiguity) and GC (low

ambiguity) blocks. To quantify ambiguity, we assumed subjects

were ideal Bayesian observers who used a model of probabilistic

outcomes. We focused on two alternative models to predict subject

responses, M1 and M2. Under M1, Bayesian learning combines

new information with existing generalizations based on group

membership. Conversely, M2 accumulates information about

every individual independently, without the benefit of generaliza-

tion.

To make optimal guesses about the choices of each group

member, subjects have to infer their preferences i.e. the probability

that this individual will choose a particular option, say ‘purple’.

We denote this probability with hi[½0,1�. The information

following each trial is equivalent to observing the outcome of a

biased coin. We use the random variable oni
to denote whether the

choice of the ith individual was ‘purple’ (oni
~1) or ‘blue’ (oni

~0):

i[1, . . . ,I in trial ni[1, . . . ,10 (subjects encountered I~30
individuals in each of the two groups).

In what follows, we consider alternative models that subjects

might have used to infer the hi[½0,1�. We start with a model that

permits generalization and then turn to a version that precludes

generalization. We also consider a few alternative models that can

be considered as special cases that are of interest from an RL

perspective.

Models
M1: Bayes-optimal generalization. The critical feature of

M1 is that guesses about each individual are informed by

knowledge about group membership. This model supposes that

Figure 1. This schematic shows the structure of each trial. A face was presented for 600 ms before two choice options were displayed. The
choice options cue the subjects’ guess, which was then indicated by a yellow border around the selected option. Audio and visual feedback indicated
whether the choice was rewarded (correct) or not (incorrect).
doi:10.1371/journal.pcbi.1002346.g001

Learning and Generalization under Ambiguity
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subjects jointly learn about all individuals in a given group. In the

generalization context, subjects should be more confident about a

new individual from the unambiguous group, relative to the

ambiguous group that provides no contextual clues. This

differential uncertainty (ambiguity) is our focus. For simplicity,

we assumed that subjects generalize within, but not between,

groups. In other words, learning in one context was independent

of learning in the other. An additional hierarchical level would

permit generalization across contexts (e.g., the relative size of each

group) and could be modeled with an extension of the Bayesian

framework described below [40].

The form of our model appeals to behavioral evidence that

human rule learning resembles non-parametric Bayesian inference

[41]. It is also related to a previous [42] Bayesian formulation of

rule-learning. (While the latter model focuses on Pavlovian

learning, it resembles M1 through inferring the hidden number

of subgroups or ‘latent causes’ [42]). In our model, subjects

represent the (preferences of) individuals, h1, . . . ,hI ,hNEWf g where

I is the total number of individuals encountered so far. Subjects

represent individual preferences by assigning individuals to

subgroups, according to their similarity. Note that while subjects

observe group membership, subgroup membership is hidden:

There are two hidden subgroups in the ambiguous context,

preferring either blue or purple, but only one in the generalization

context. By first finding the number and nature of subgroups,

optimal Bayesian assignment avoids over-generalization (e.g.

incorrectly labeling a new blue-preferring individual as belonging

to a known purple-preferring subgroup) and under-generalizing

(e.g. failing to recognize that a new purple-preferring individual

belongs to a known purple-preferring subgroup). This type of

learning has had considerable success in modeling category

learning in humans [41] and ‘rationalizes’ non-Bayesian models

of generalization in reinforcement learning [43] (see below).

We assume that subjects store the number of times (out of Ni)

the ith individual chose ‘purple’. The cumulative counts up to the

present trial t, are denoted by dt~f(yi,Ni{yi)gI
i~1 where

yi~
PNi

ni~1

oni
. Subjects model their cumulative observations yi as

drawn from a mixture of Binomial distributions of the form

Bin(yDN,h). Being ignorant of the mixing distribution h, we

assume they use a Dirichlet process G over h, with concentration

parameter a and base distribution G0 [corresponding to the

uninformative conjugate Beta distribution Beta(1,1)]. These

define the base measure aG0. The resulting probabilistic model is

yi Dhi*Bin(Ni,hi)

hi DG*G

GDG0,a*DP(G0,a)

ð1Þ

Here 0R*S0 means R has the distribution S; so the right hand

side specifies a distribution. The Dirichlet process, DP, is thus a

distribution on distributions and models ambiguity. Because

realizations of a DP are discrete with probability one, these

models can be viewed as probability measures consisting of a

weighted sum of point masses [44,45]; i.e., countably infinite

mixtures

G~
X?
k~1

pkd(h�k)*DP(G0,a) ð2Þ

Here d(x) is a point mass at a single point x, pk is a stick-breaking

process and h�k is distributed as G0 [46].

The implicit form of generalization is more transparent when

we integrate over G to obtain a prior over hi in terms of successive

conditional distributions (see [46] for a measure-theoretic proof of

this integral)

hi Dh1, . . . ,hi{1*
1

i{1za

Xi{1

j~1

d hj

� �
zaG0

" #
ð3Þ

This means the prior belief about one individual hi depends on

knowledge about others sampled from the population,
Pi{1

j~1

d hj

� �
, as

well as the initial distribution G0. This completes our description of

M1 in terms of a likelihood (in Eq. 1) and prior (in Eq. 2/3).

To predict subject’s responses we require M1’s posterior belief

about the behavioral contingencies. This quantifies the ambiguity

as well as the value of their response options. For posterior

inference, one can obtain a sample from the posterior of

h~fh1, . . . ,hIg by simulating a Markov chain whose equilibrium

distribution is the desired posterior distribution [47]. The simplest

approach is to repeatedly sample hi from its conditional

distribution, given both the data and all other hj=i, denoted by

h{i. This distribution therefore combines the likelihood of hi and

the prior, conditional on h{i. This conditional prior for an

individual based on previous individuals is given by

hi Dh{i*
1

I{1za

X
j=i

d hj

� �
zaG0

" #
ð4Þ

and derives from the previous equation by noting that i is the last

of I observations (i.e. by assuming the hi are exchangeable).

Introducing the likelihood, this yields the following conditional

posterior distribution:

hi Dh{i ,yi*b
X
j=i

Bin yi DNj ,hj

� �
d hj

� �
zba

ð
Bin yi DNi ,hð ÞdG0(h)Qi ð5Þ

Where Qi is the posterior over hi, based on the prior G0 and the

single observation yi with likelihood Bin yi DNi,hið Þ, i.e. Beta
(hi D1zyi,1zNi{yi). Here, b is chosen to ensure that

b
X
i=j

Bin yi DNj ,hj

� �
za

ð
Bin yi DNi ,hð ÞdG0(h)

" #
~1:

This Bayesian model is related to the non-Bayesian RL model of

[43] mentioned in the introduction. In that RL model, each cue is

first ‘classified’ before reinforcement learning. A cue is either

assigned to a known class of cues based on similarity, or designated

exceptional and given its own class. Both perceptual similarity and

predictive similarity play a role: do two cues look the same? do

they predict the same outcomes? Regarding the latter, negative

prediction errors from RL reduce perceived similarity between cues in

a separate recognition system, thereby promoting discrimination over

generalization [43]. Our focus is on this predictive similarity. To

derive optimal generalization, we define predictive similarity as the

likelihood of an outcome, given a cue (rather than the inverse

magnitude of a negative prediction error). In particular, a cue’s

past associations determine if it will be assigned to a known class

based on similarity, defined by Bin yi DNj ,hj

� �
, or assigned to its

own class with probability ba
Ð

Bin yi DNi,hð ÞdG0(h). The hyper-

parameter a controls this tradeoff between generalization and

discrimination and can itself be learned [48].

Learning and Generalization under Ambiguity
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Having assumed G0 is an uninformative Beta distribution,

Beta hD1,1ð Þ, which is conjugate to the likelihood, calculating the

integral
Ð

Bin yi DNi,hð ÞdG0(h) and sampling from Qi are straight-

forward. The simplest algorithm [47] for Gibbs sampling from the

full posterior p(h1, . . . ,hI ,hNEW Ddt) including hNEW is (see [47,48]

for further details):

For i~1, . . . ,I :
RDraw a new value from hi Dh{i,yi as defined above.

With probability
a

I{a
draw hNEW from the base distribution G0.

ROtherwise, uniformly draw one existing fhi : i~1, . . . ,Ig and assign

its value to hNEW .

This procedure approximates the trial-by-trial evolution of

posterior belief about preferences, p(h1, . . . ,hI ,hNEW Ddt). Once the

Markov chain has reached equilibrium, we use a sample of size S
from that distribution. Furthermore, any marginal posterior of

interest p(hi Ddt) or p(hNEW Ddt) is approximated simply as the

univariate component of this joint sample [49].

We used two measures of this time-dependent posterior as

explanatory variables to predict the behavioral and neurophysi-

ological responses of each subject. Firstly, we operationalized the

ambiguity about each new individual using the Shannon entropy

Ht~H(p(hNEW Ddt)). To evaluate this entropy, univariate samples

from p(hNEW Ddt) were first binned into L~20 bins to provide an

approximate discrete probability mass function with p̂pl~#

fhNEW[lth bing=S. In this case, we have H&
PL
l~1

p̂pl log p̂pl . This

uncertainty measure characterizes the ambiguity about a new

individual, as generalized from experience with other individuals

in the group. A differential entropy between AC/GC reflects both

the number of subgroups (clusters) and uncertainty about the

parameters describing those subgroups. To see this more clearly

take an extreme case where all I individuals encountered so far

have been attributed to one subgroup, h1~h2~ . . . ~hI~c. This

subgroup, characterized by a parameter setting of c, is therefore

strongly favored as an a priori explanation for new individuals (i.e.

strong generalization). Applying this condition to Eq. 3 gives

hNEW Dh1, . . . ,hI*
1

Iza
Id cð ÞzaG0½ �

Intuitively,
I

Iza
probability mass now rests on just one point mass

(for small a this is all the mass). This predictive distribution is

therefore less ‘dispersed’ than if there were two or more subgroups

(i.e. it has lower entropy). For this reason, when Ht is small,

learning is more strongly biased towards belief in one subgroup. In

this sense, the entropy can be regarded as a proxy for ambiguity

that dictates the ‘learning rate’ or the sensitivity to new

information. We used this entropy measure to identify the

neurophysiological correlates of ambiguity, using fMRI responses.

We have emphasized that greater prior ambiguity (i.e. higher

number of inferred subgroups/higher predictive entropy) is

accompanied by a diminished a priori bias. This affords

observations more influence over posterior belief. Another

influential hypothesis is that uncertainty influences choice by

promoting exploration itself [50,51] i.e. what to learn about vs.

how fast to learn in the current situation. To simplify things, we

chose a task with no exploration-exploitation trade-off. Specifical-

ly, because every trial in our task provides feedback on the value of

the chosen action and counterfactual information about the other

unchosen action, there is no information to be gained from

exploring the less valuable action.

Subjects do not know the true expected reward, hi,TRUE , for

choosing ‘purple’ when faced with the ith individual (they do not

know that individual’s preference). Let gM1
niz1 then denote their

subjective, expected reward for guessing ‘purple’ on the niz1th trial

faced with the ith individual, following a total of t trials under M1.

This expectation is defined by weighting possible values of hi

according to their current plausibility, giving gM1
niz1~

Ð
hip hi Ddtð Þdhi.

This is just the posterior expectation of hi and can be approximated

by

gM1
niz1&

1

S

XS

s~1

hi,s ð6Þ

Here, each hi,s is an MCMC sample from the posterior p(hi Ddt)
conditional on all observations to date. This replaces an analytic

expectation with an empirical expectation (converging according to

the law of large numbers). An exactly analogous approximation yields

the predicted value for a new cue:

gM1
NEW ,1~

ð
hNEW p hNEW Ddtð ÞdhNEW&

1

S

XS

s~1

hNEW ,s ð7Þ

We now turn to some alternative models.

M2: Rescorla-Wagner without generalization. To assess

the predictions of M1 in relation to a null model, we also

considered the predictions under M2, where subjects learn about

each individual without generalization. Under this assumption, the

expected reward (correct choice) can be modeled with classical

Rescorla-Wagner learning [15].

gM2
niz1~gM2

ni
zadni

d~oni
{gM2

ni

and

gM2
NEW ~0:5

ð8Þ

Where oni
is still the binary outcome on trial n with the ith cue. One

implementation of M2 - akin to habit learning – would be to

separately initialize the value of guessing ‘purple’ or ‘blue’

(gPURPLE,t, gBLUE,t) to zero and update each only when the

corresponding action was taken [52]. Guesses could then be

modeled according to p PURPLEð Þ!exp lgPURPLE,t

� �
, where l

controls the stochastic precision of the guess. However, because

subjects are told that exactly one option is correct, each outcome is

informative about the counterfactual (unchosen) option. We

therefore initialized gni
(the value of the purple guess on trial n in

the presence of each cue i) to 1=2, and defined the value of the blue

choice as 1{gni
. Subsequent outcomes oni

[f0,1g push gM2
ni

up or

down as specified by M2. This agent therefore uses counterfactual

data (from the unchosen option), but does not generalize between

individuals. We fit the free ‘learning rate’ parameter a by

minimizing the error function, E að Þ~
PI
i~1

PNi

ni~1

(gni
að Þ{xni

)2,

where xni
[f0,1g indicates which option the subject guessed on

the corresponding trial (coded as PURPLE~1,BLUE~0). E að Þ
was evaluated numerically for different values of a with increments

of 0:001 within parameter space.

M3–M5: Additional models. The resulting sequence of

value for our two models gM1,gM2 are plotted as a function of trial

number in the dashed and solid curves of Figure 2, for the

sequence of face cues and outcomes presented to our subjects (i.e.

the sequence of blue/purple choices made by each individual).

These correspond to the value of guessing purple under a model

Learning and Generalization under Ambiguity
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with (M1) and without (M2) the facility for generalization. For ease

of visualization, Figure 2 and 3 interpolate discrete-time model

predictions to form smooth curves. The vertical lines demarking

the context (ambiguous or generalization) are centered on the first

trial of each block.

To ensure we had not overlooked other explanations for the

subjects’ responses, we performed secondary analyses, to establish

the explanatory power of M1 in the context of alternative models,

M3–M5. M3 was a generalization of M2 [15], which represents

and learns the value of contextual (group-membership) cues. This

agent therefore represents 62 cues (60 faces, 2 contextual cues). On

each trial, M3 calls and updates both the context (group) and

individual (face) cues presented on that trial. Defining ot as the

outcome on trial t~1, . . . ,600 and gM3
i,t as the instrumental value

of choosing purple, faced with the ith cue, updates were

implemented with

gM3
i,tz1~gM3

i,t zadi,t

d~oni
{
X

i
I(i)gM3

i,t

ð9Þ

where the indicator I(i) is 1 whenever the ith cue is present and 0
otherwise. Only values for cues actually present in trial t are

updated. Like M2, this agent uses counterfactual information

(from the unchosen option). Specifically, the value of choosing

‘purple’ on trial n was
P

i I(i)gM3
i,t and the value of choosing ‘blue’

was 1{
P

i I(i)gM3
i,t . Each gM3

i,t was initialized to 0:25 so that prior

to learning ‘blue’ or ‘purple’ were equally valuable; i.e.,

0:5~
P

i I(i)gM3
i,t . The free parameter a was fit to each subject’s

guesses using the same procedure as for M2. M4 modeled a

Bayesian learner that over-generalizes. It has an identical mathemat-

ical form to M1 but unlike M1 does not distinguish between

contexts. It treats all individuals from the two contexts/

populations indiscriminately i.e. as part of one ‘meta-population’.

M5 modeled a Bayesian learner that under-generalizes; In other

words, it can represent uncertainty but cannot generalize. M5, like

M1 and M4, models observations associated with any one

individual as yi Dhi*Bin(Ni,hi), but differs in the prior. In

particular, each individual is treated independently with no

generalization within or between groups (the prior over individuals

factorizes). Specifically, we use a Beta prior that resets the prior for

the ith cue to uniform Beta hi D1,1ð Þ, irrespective of its experience

with other cues. This agent shares a key feature of M2 - resetting

the predictions for each new cue to 0.5 and learning without

generalization. For subsequent trials, it calculates the expected

value of choosing purple as

(yiz1)=(Niz2) ð10Þ

where yi is still the count of correct purple choices with cue i (see

above and [49]). In practice this agent’s predictions are similar to

M2.

Relating model predictions to data
Behavior. We used logistic regression to predict trial-by-trial

choices from the value (expected reward) based on M1, while

including the value derived from models M2{M5 as additional

nuisance covariates. We calculated within-subject point estimates

of the partial regression coefficients of M1 predictions, before

testing for significant (nonzero) effects at the between-subject level

using standard classical statistics.

Figure 2. Subject’s predicted value (expected reward) for guessing ‘purple’, according to model-based (M1, red-dashed) and
model-free (M2, black) schemes. M1 tracks current information when necessary (AC), and otherwise exploits generalization to limit the impact of
spurious outcomes on action (GC). M2 is ignorant about each new individual and myopically chases reward. Red circles indicate the actual guesses of
a typical subject.
doi:10.1371/journal.pcbi.1002346.g002
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fMRI. Our analyses of the fMRI data used a conventional

approach in which the parametric effects of variables from our

formal Bayesian model were used to predict the amplitude of

fMRI responses, after convolution with a suitable hemodynamic

response function [53]. Because the majority of experimental

variation in the model predictions is between conditions (AC vs.

GC), we arranged these conditions in a block design to ensure

high efficiency. We could therefore choose either a conventional

analysis that simply tested for condition effects or a model-based

analysis that used parametric variations within and between

conditions. To exploit our formal model, we used the more

comprehensive model-based analysis: The fMRI data were

modeled using a general linear convolution model, whose

explanatory variables comprised stimulus functions convolved

with a canonical hemodynamic response function. These

stimulus functions comprised delta functions modulated by the

following:

1) The prediction ‘risk’ under M1 (time-locked to the choice

presentation): 2) The reward predictions under M1, conditioned

on the subject’s choice (time-locked to the choice): 3) The model-

based (Shannon) surprise at the outcome under M1 (time-locked to

the outcome): 4) The signed model-based prediction error under

M1, conditional on subject’s choice (time-locked to the outcome):

5) the trial outcome: correct/incorrect, coded at 1,0 respectively

(time-locked to the outcome). In terms of our hypothesis, these

regressors can be regarded as modeling nuisance effects. Our final

regressor was the key effect of interest; namely, the trial specific

ambiguity as measured by the Shannon entropy above. It is this

measure that reflects an encoding of contextual uncertainty that

weakens generalization. The entropy entered as parametrically

modulated delta functions at the time of choice, but before

feedback. Six columns describing scan-specific rigid body

translations and rotations were included as confounds. The data

was temporally filtered to remove low-frequency drifts below 1/

128 Hz.

Results

Figure 2 shows the value (expected reward) of each choice

according to the two main learning models we considered,

together with a typical subject’s guesses. Model 1 (M1) generalizes,

while Model 2 (M2) cannot. For each subject, we used logistic

regression to explain their choices in terms of these predictions and

a constant term. Using a between-subject summary-statistic

approach, we applied a two-tailed Student’s t-test to the subject-

specific logistic regression coefficients associated with the predic-

tions of M1 (red-dashed curve, Figure 2). We rejected the null

hypothesis that this effect was equal to zero (p~0:00041, n~19).

Interestingly, the size of the M1 regression coefficient predicted the

total number of rewards obtained by each subject (correlation

r~0:651, p~0:0025n~19). This illustrates that generalization is

evident behaviorally and pays off.

A secondary behavioral analysis assessed the specificity of M1

predictions by examining the explanatory power of M1 in the

context of the alternative models, M2 to M5. For each subject, we

used logistic regression to explain subject’s choices as a mixture of

predictions from five models (M1 to M5), plus a constant term.

Having estimated the logistic regression model for each subject, we

again considered the subject-specific estimates for the coefficient

reporting on M1 predictions. A two-tailed Student’s t-test on the

M1 coefficients was highly significant, p~0:00069, N~19. No

other model coefficients reached significance.

To summarize, we used standard regression techniques to ask if,

having accounted for competing models, a component of choice

behavior reflects Bayes-optimal generalization (M1). Specifically,

we included several model predictions in one linear model and

estimated the partial regression coefficient for the predictor of

interest (action-values derived from M1). One can therefore [54]

conclude that, over and above competing models, behavior can be

predicted by M1. Because Models M2 and M3 have a free

parameter this conclusion is conservative: having been pre-fit to

Figure 3. Degree of learning formalized as prior uncertainty about the reinforcement contingencies, in M1. Without evidence of a
contextual norm (in the AC) subjects are uncertain about what to do with an unfamiliar person, and must learn quickly. This time-series, convolved
with a hemodynamic response function predicted hippocampal fMRI responses (see main text).
doi:10.1371/journal.pcbi.1002346.g003
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subject’s behavior, these models have an explanatory advantage

that is unavailable to M1 (or M4 and M5). In contrast to M2 (Eq.

8), M1 attempts to explain behavior via abstract computational

principles, not detailed mechanisms. Its predictions have no free

parameters. Rather, its predictions are based only on the subject’s

observations under ideal Bayesian assumptions. We have demon-

strated that this model predicts behavior, above and beyond that

explained by the other models considered. In what follows, we

now ask whether the brain encodes ambiguity [see e.g. [39] for a

similar approach].

While M1 differs from other models in many ways, the

important aspect for the fMRI analysis is that M1 provides an

ambiguity measure. We therefore tested the null hypothesis that

the fMRI signal is sensitive to ambiguity, as quantified by the

Shannon entropy of prior belief (see above). In our fMRI data,

fourteen subjects satisfied the inclusion criteria for a second-level

between subject analysis (no interruptions to the scanner session or

rapid head movement, as estimated by co-registration). We

conducted regional and whole-brain analyses. All fMRI results

presented here are based on the same general linear model,

including the confounding factors (i.e., with nine regressors). In

view of our specific hypothesis, region of interest (ROI) analyses

asked whether activity within bilateral hippocampi tracked

ambiguity about the current contingencies. Figure 4a shows the

anatomy of the ROI.

Figure 3 depicts ambiguity about a new individual (alternating

block-wise between GC and AC blocks). As discussed, this dictates

the relative influence of the current observation on belief updates

(higher when there is high ambiguity). The parameter estimates

associated with the entropy regressor above were averaged over

bilateral hippocampal voxels for each subject, using the AAL atlas

[55]. We applied a two-tailed Student’s t-test to these subject-

specific summaries, testing the null hypothesis that hippocampal

responses do not covary with ambiguity. We were able to reject

this null hypothesis with a correct p~0:0245, n~14. Repeating

the analysis on unilateral right and left hippocampus separately

provided similar results (p~0:0303, p~0:0328, respectively).

(These latter two results examine the separate contribution of

each hemisphere to our bi-lateral effect. These tests are not

statistically independent of the bi-lateral test and were not subject

to additional correction.) There was no significant difference

between left and right hippocampi. Our results therefore suggest

that neuronal activity encodes the same sorts of variables that arise

in our Bayes-optimal computations and, consequently, may be

performing some form of approximate Bayesian inference.

As with the behavioral data, we next examined the between-

subject correlation between the hippocampal ambiguity coeffi-

cients and the total number of rewards attained in the experiment

(correlation r~0:554, p~0:0399n~14). Testing for separate

correlations in left and right hippocampal effects gave respectively:

r~0:624, p~0:0172 and r~0:4265, p~0:1283 (n~14).

In an exploratory whole brain analysis, we then smoothed the

data with a Gaussian Kernel FWHM~ 4mm 4mm 4mm½ � and re-

estimated the general linear model above using a conventional

SPM analysis with whole brain correction for multiple compar-

isons [56]. Two right-hemisphere clusters survived correction for

cluster-extent (using a height threshold of 3). The first region

(p~0:04 FWE corrected) subsumed a right hippocampal region,

mostly hippocampus and amygdala, but also putamen, as defined

with the AAL atlas [55]. The second region (p~0:031 FWE

corrected) encompassed the fusiform gyrus and precuneus, with a

spill-over into a calcarine region. These regions are shown in

maximum intensity projection format in Figure 4b (this display

format shows voxels with maximum intensity that fall on parallel

lines traced from the viewpoint to the plane of projection as in a

standard X-Ray). Orthogonal views of the anterior activation at its

local maximum are shown in Figure 4c. For illustration purposes,

Figure 4d shows the mean times series in this anterior region,

averaged over all subjects. All of the above fMRI analyses were

based on the same model, which included the nuisance regressors

listed in Relating model predictions to data: fMRI. None of

these nuisance effects could explain the variation in hippocampal

responses that was explained by our Bayes-optimal generalization

model (M1).

Discussion

Behaviorally, we have shown that subjects learn action-reward

relationships in a manner that enables them to generalize rules to

new situations. Crucially, this enables subjects to adapt their

learning rate to provide an optimal balance between pre-existing

generalizations and new information. We established this by

showing that the accuracy of subjects’ guesses evolved over trials in

a way that was predicted by Bayes-optimal generalization, using a

statistical model equipped with prior beliefs that allowed for

contextual ambiguity. Furthermore, we established that a

significant component of hippocampal responses could be

explained by fluctuations in ambiguity under this model. These

regionally specific responses were also significant in a whole brain

SPM analysis.

We provide empirical support for a model that explains how

experience moderates decision making. In this model, the bias

towards rule-based choices is determined by low ambiguity. We

show that both learning and hippocampal responses are

attenuated when the underlying rule is learned and applied in

an unambiguous context. Conventional ‘model-free’ reinforce-

ment learning cannot easily explain such effects because these

schemes do not include contextual ambiguity. As noted in the

introduction, one recent variant of reinforcement learning [43] is

relevant here: In this two-system learning theory, generalization

between observable cues rests both on their perceptual similarity

and their predictive similarity (do cues look the same? do they

predict the same outcomes?). The authors of [43] contrast normal

learning with under/over-generalization or ‘under/over willing-

ness to generate a new state’ p 97. We have used a single model

that formalizes this optimality by drawing on principles of optimal

probabilistic generalization (see [42] for a related model). As in

[43], our model generalizes by classifying observable cues before

acting. Unlike [43], it invokes an explicit representation of

subjective ambiguity to mediate and optimize this generalization.

There remains an interesting challenge to relate our formulation

and results to classical RL schemes. Interestingly the authors of

[43] speculate that the neuronal systems mediating generalization

depend on the hippocampus (and PFC); because these systems are

flexible, the rules by which observable cues are classified can easily

be changed to permit new discriminations. These speculations are

entirely consistent with our findings.

As in previous treatments [14], we distinguish uncertainty about

objective, observable events (e.g., the risk of getting ‘tails’ in a fair

coin flip) from subjective ambiguity about unobservable states or

parameters (is the coin really fair?). While the hippocampus has

been implicated in the former [23,35,57], the latter is central to

computational accounts of contextual learning and inference; e.g.

[1,22]. Using a Bayes-optimal model, our work provides the first

evidence that the hippocampus tracks contextual ambiguity about

hidden or latent variables.

Previous work [11,14,39,58] has addressed how ambiguity

mediates the influence of uncued temporal variability (volatility) on
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learning. We asked if variability in response requirements to

different cues influences creates ambiguity and influences learning.

In the current study, we manipulated the uncertainty about the

behavioral contingencies over contexts, rather than time, and

showed that associative learning adapts accordingly. Further work

could examine whether neuromodulatory manipulations influence

this effect; e.g., by selectively facilitating synaptic gain as predicted

by [11,59]. The role of dopamine deserves special attention, given

Figure 4. Structural MRI, mask and functional activation. (a) Structural region-of-interest (white) on the subjects’ average anatomical image.
For visualization, black blobs exceed the 0.05 level uncorrected threshold corresponding to a Student’s t (13 df). See the main text for statistical
inference at a corrected p,0.05 level. (b,c) Whole brain analysis of the effect of ambiguity. (b) Shows a glass-brain view (maximum intensity
projection) of significant activations. (c) Shows the anterior activation, which included right anterior hippocampus and amygdala as defined,
superimposed on the subjects’ average anatomical image. (d) The observed fMRI trial-by-trial time-series (blue) averaged over all subjects for the
hippocampal activation identified in our whole brain analysis (see main text). The model-based ambiguity is shown in red. Note that the model only
captures the slow changes in observed responses over blocks as the contingencies are learned.
doi:10.1371/journal.pcbi.1002346.g004
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prior work with Pavlovian or simpler instrumental tasks [60].

Additionally, given that the amygdala is able to modulate memory

storage in non-amygdala brain areas [61], multi-region in vivo

recordings could disclose interactions with the hippocampus in

these tasks. Interestingly, the amygdala activation in our whole-

brain analyses is consistent with previous work implicating the

amygdala in the representation of ambiguity [24,62]. However,

previous studies were unable to address whether ambiguity

regulates learning, as predicted theoretically. In line with Bayesian

learning theory, our results suggest that learning (updating beliefs)

can be guided by optimal probabilistic constraints, generalized

from previous experience.

The learning rate in (model-free) reinforcement learning

prescribes the sensitivity of belief updates to current information.

When this information is under or over-weighted, inefficient

learning ensues. While classical RL is non-probabilistic (i.e. has a

degraded uncertainty representation [22]), it may in principle

address this challenge by incorporating something akin to an

‘ambiguity-dependent’ or ‘surprise-dependent’ learning rate. For

example, attempts have been made to optimise learning rates

[63,64] in both stationary and non-stationary settings [65].

Bayesian learners use the rules of probability to achieve this

balance by weighing new information against pre-existing

generalizations. The relative weight of the latter depends upon

ambiguity (the relative confidence in prior beliefs about the

current context). When pre-existing beliefs are held with a high

degree of confidence, they generally accommodate new observa-

tions, by down-weighting their impact. Such abilities to balance

different sources of information and constraints are at the heart of

adaptive behavior [66]. For example, appropriate social behavior

requires communal norms, while retaining sensitivity to individual

inclinations and preferences. The (social) learning task in this

paper is a first step in this direction. Conversely, aberrant

generalization has widespread consequences [2,3,5,67]. The

framework used in this study may provide an experimental

framework to quantify dysfunctional generalization in specific

patients; e.g., over-generalized schemata which persist despite

contradictory evidence, as seen in depressive and delusional states

and its associated pathophysiology at the neuronal level.
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