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Abstract

We revisit the task of identifying the regulatory drivers of observed differential RNA gene expression. Our

R package provides both up-to-data DNA transcription factor binding motif data and tools to correlate

them with RNA transcription variation over genes. Specifically, the package “dbr”, named for differential

binding in R, seeks to modernize the important tool introduced in Cole et al. (2004). It is freely available at

https://github.com/chumbleycode/dbr.

Introduction

Revisiting TeLiS

The goal of TeLiS (Cole et al. 2004) was to implicate some gene expression regulator - say CREB3 - in the

observed pattern of gene expression over treatment groups. The approach has three steps. In step 1 we

identify a sampling frame of ng genes and label a subset of k < ng of these genes “differentially expressed”1.

Step 2 uses external bioinformatic information to evaluate the average number of CREB3 DNA binding

motifs within our subset of “differentially expressed” genes2. In step 3 we compare this latter with the

average number of CREB3 motifs in a random subset or sample of k genes from the entire population of ng

genes. This assumes a parametric, frequentist hypothesis testing framework and yields a p-value about the

representativeness of our k sample. This p-value reveals whether our gene set contains a suprising number of

motifs, which is itself taken as circumstantial evidence that CREB3 mediated differential expression. TeLiS

therefore complements and extends traditional gene-by-gene analyses with DNA information. Steps 2 and 3
∗justin.chumbley@pm.me
†belevitt@email.unc.edu

1This is the set of genes whose differentially expression we can estimate. We therefore ignore, for example, genes with little
or no variation in expression over subjects.

2We here define as "motif" any binding site with high affinity for either one or two transcription factors cooperatively. We use
the notation a, b and a :: b for motifs binding to a,b or both respectively.
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exploit publically available DNA data repositories that allow us to calculate the number of binding motifs,

mij , for each transcription factor j within each gene i.

Statistical assumptions implicit in TeLiS

The DNA motif data can be arranged as a gene x motif matrix M = (mij). M is an ng × nb matrix linking

our gene population i ∈ {1, 2, ..., ng} to the set of binding motifs j ∈ {1, 2, ..., nb}3.

Let ω denote our set of k “differentially expressed” genes. For example, we define ω to be the top ranking

k = 100 differentially expressed genes. Then {mij : i ∈ ω} is the corresponding set of k motif counts for

regulator j in each of these differentially expressed genes. This is simply the relevent k rows of the jth column

of M. Let Tωj := 1
k

∑
i∈ω mij denote the per-gene mean number of motif binding sites in ω. We will use

Tj as notational shorthand for this latter quantity, but the dependence on ω is implied. If Tj is “relatively

large”, then the gene set is relatively enriched with motif j. Intuitively, this motif is then implicated as a

possible root cause of the observed differential gene expression which characterizes ω. In the sense discussed

above, Tj may then be interpreted as a test of differential regulation by j.

The original parametric null distribution for Tj implicitly assumed that the number of binding sites within

each of our k genes is independently and identically distributed: each being the (random) number of sites

found in a single gene sampled uniformly at random with replacement from the entire gene population. We

postpone the question of biological dependence between genes and note that sampling is only approximately

independent or identically distributed because genes are in fact sampled without replacement from a finite

sample frame. This may be relevant when the sample frame is relatively small, or in calculating statistics other

than the average motif enrichment discussed above. In fact one can easily use (non-parametric) Monte Carlo

sampling without replacement to calculate the null distribution of any statistic, e.g. the mean differential

effect within all genes targeted by a transcription
∑

i θi[mij > 0], where θi is an estimate of the per-gene

differential expression measure, mij in the motif count of regulator j in gene i and [·] is Iverson notation for

the indicator function.

Simple random sampling without replacement from the gene population provides one possible outcome ω from

the sample space Ωng,k of
(

ng

k

)
possible gene sets of cardinality k within a gene population of size ng. Now

Tj is a random variable4 whose null distribution is therefore functionally determined by our null hypothesis

on Ωng,k. The null hypothesis we consider is equivalent to ω ∼ U(Ωng,k): i.e. the gene set is chosen uniformly
3Note that mij = kpij where k is the total number of positions on the genome that host a regulator and pij is the share

of all these sites that bind regulator j in gene i. For more details on the original parametric, and non-parametric model and
implementation, see appendix.

4Tj : Ωng,k → Q≥0 with domain Ωng,k and codomain the set of non-negative rational numbers.
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at random from Ωng,k. Then the chance of each an every gene set is just 1/|Ωng,k| = 1/
(

ng

k

)
, where | · |

is the set cardinality function. Then P (Tj = t|ng, k) = 1
|Ωng,k|

∑
ω∈Ωng,k

[Tωj = t], where [·] is the boolean

indicator function. Classical tests and p-values then follow simply, for example by finding a critical value

t : P (Tj ≥ t) = α or, recalling that we have already defined a set of enrichment scores {T1, T2, ..Tk}, choosing

t : P (∪j{Tj ≥ t}) = α which controls the family-wise error rate, etc.

Because |Ωng,k| is too large to conveniently enumerate, one might pursue a simple Monte Carlo approximation:

sample 100000 times from Ωng,k and determine the corresponding approximate null distribution for Tj .

Computationally, we calculate 100000 samples from the null distribution as (the collumns of) (Q ∗M)/k,

where M is still our ng × nb gene x binding motif matrix and Q is a 10000× ng matrix whose boolean rows

each indicate one of 100000 elements sampled uniformly at random without replacement from Ωng,k. If we

observe a relatively high value tj , relative to this Monte Carlo null distribution we conclude that there is

“over-representation” of a regulator in promoters of differentially expressed genes, and we report a one-tailed

p-value gauging statistical significance.

Recall our two assumptions, fixed n and random sampling of gene sets ω. The former assumption is

inconvenient when n is itself chosen adaptively based on the data. To avoid redefining our sample space, so

that n is formally a random variable, we follow Cole et al. (2004) and simply condition all inference on n

(see below for details on defining ω). The latter assumption seems strong: expression of genes is clustered

or correlated, so it would seem that not all ω are equally likely as assumed by ω ∼ U(Ωng,k). Yet recall

that ω is selected based on differential expression, so it is only relevant whether the gene-specific estimators

of differential expression are clustered or correlated. We assume that two estimators are correlated if and

only if some co-regulator is responsible for their coordinated differential expression. But then there will be

no correlation or clustering between estimators under the null hypothesis, all ω will be equally likely and

ω ∼ U(Ωng,k) appears defensible.

Possible extensions of TeLiS

We now discuss one limitation of TeLiS: if two regulators A and B are declared significant, A may be causally

responsible for ω while B may be spurious. B simply has a similar (confounded) motif count pattern across

genes to A. TeLiS does not offer such adjustments. We propose an alternative which both reduces these false

positives - due to this confounding - and false negatives, due to insufficient power. The latter is possible by

pooling data over all ng genes in the gene population - not just the k genes in TeLiS - into the estimation of

a single scalar parameter.
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To do this we relax the requirement that genes be first labeled as DE (or not): this classification is heuristic and

looses information. We instead attempt to predict variation in the estimated differential expression θi across

all ng genes in the gene population. For a fixed our regulator of interest j, we correlate j′s motif count over

genes mij with the estimated gene-by-gene DE estimates θi. This can be achieved via some non-parametric

or linear regression model E(θi|mij) = a+ bjmij . The parameter bj amounts to an interaction term, wherein

the effect of some exposure on gene expression itself depends on the motif density, i.e. larger in genes with

more motifs for j. From a multilevel modeling perspective, the parameter bj might also be viewed as a second

level regression parameter controlling the effect of motif density on the (first level) gene-specific random

effects which relate between-subject exposure variation to between-subject variation in the expression of the

specific gene. The regression function for subject s of gene i on exposure xs is E(yis|xs, zs) = α+ θixs + C,

with C =
∑

k bkizks the linear effect of some covariates {zk}. One benefit of a linear approach is that we can

easily infer the partial effect of transcription factor j on differential expression, adjusting for the potentially

confounding effect of other transcription factor(s). This is just E(θi|M) = a +
∑

j bjmij . This may help

avoid falsely attributing differential expression to one regulator j when there exist other canditates with a

similar/confounded motif counts over genes. Such motif covariation can be directly inspected in this linear

framework, while it is harder to study in any approach based on preselecting genes (see appendix). Note

also the increased power: this approach pools data over all genes and subjects into the estimation of a single

scalar parameter bj .

Modern TeLiS implementation

We have written the “dbr” software package to assess differential binding in R. As suggested above, the goal

of dbr is to implicate a gene regulator - typically an upstream transcription factor - in the differential RNA

expression observed between treatment groups. We then say that there is “differential binding” (DB) of the

regulator over treatments. In practice, dbr asks whether the pattern of differential RNA expression over

genes reflects (the per-gene count of DNA binding-site motifs for) some upstream gene regulator.

In addition to the raw gene-by-motif count matrices, the package currently provides some functions to augment

the popular limma package. Our reimplementation of TeLiS incorporates the most up-to-date motif binding

data, offers a non-parametric version of TeLiS (when the sampling frame of genes is small), and provides

smooth compatibility with limma. The package is available at https://github.com/chumbleycode/dbr. It

includes the possible extensions of TeLiS which we have discussed above.

This new functionality that aims to eschews the need to heuristically categorize genes, prior to DB analysis
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proper, as differentially expressed or not. The simplest - cheap and cheerful - approach is to simply regress

gene-specific DE estimates on gene-specific binding-site counts over the entire relevant genome (genes for

which it is possible to estimate DE over treatment or exposure groups). This approach will be validated and

extended to multilevel modeling.

Installing dbr and viewing DNA binding matrices

You can install dbr on from the R console with:

install.packages("devtools")

devtools::install_github("chumbleycode/dbr")

library(dbr)

There are currently three TFBM matrices: utr1, exonic1, exonic_utr1. Type “utr1” etc into the R console to

see these. Get more info for each via ?utr1, ?exonic1, etc. Look for your DNA regulatory motifs of interest

in the columns of these matrices. For example, recent literature has examined “a pre-specified set of TFs

involved in inflammation (NF-kB and AP-1), IFN response (interferon-stimulated response elements; ISRE),

SNS activity (CREB, which mediates SNS-induced b-adrenergic signaling), and glucocorticoid signaling

(glucocorticoid receptor; GR).” In biomart nomenclature, “NF-kB” is is identified with NFKB1 or NFKB2.

AP-1 is called JUN. ISRE is identified with the set of motifs including IRF2, IRF3, IRF4, 5, 7, 8, 9. CREB

is identified with CREB3 or CREB3L1. GR is called NR3C1. This leaves us with 13 regulators plus one

complex CEBPG::CREB3L1 (CEBPG_CREB3L1), as follows. Examine the gene-by-motif count matrices in

the R console with:

immune_tfbms = c("CEBPG_CREB3L1", "CREB3", "CREB3L1", "IRF2", "IRF3",

"IRF4", "IRF5", "IRF7", "IRF8", "IRF9", "JUN", "NFKB1",

"NFKB2", "NR3C1")

utr1[, immune_tfbms] # the gene-by-motif matrix for immune motifs of interest

A simple analysis

We examine DB of some immune regulators amoung people with early-life stress (relative to unstressed)

using data from Cole et al. (2016). Such analyses generally have two steps, first differential expression then

differential binding.
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DE

1. Differential expression (DE): Estimate differential RNA expression across exposure groups. Here we use

a linear model: the exposure must currently be a single column of “design” matrix of this linear model

(dbr cannot currently handle treatments defined across multiple collumns, e.g. factors with many levels).

2. Differential binding (DB): Infer dependence of the above, per-gene, estimates on the binding-site count

of some regulator(s) of interest.

# Load packages

library(tidyverse)

library(limma)

# Download open source data then specify gene-by-gene regression model

dat = GEOquery::getGEO("GSE77164")[[1]]

# Specify whole-genome regression of rna on design

y <- dat %>% Biobase::exprs()

X <- dat %>%

Biobase::pData() %>%

select(age = `age:ch1`,

soldier = `childsoldier:ch1`,

edu = `educationlevel:ch1`)

X <- model.matrix(~ soldier + edu + age, data = X)

# Estimate DE using standard limmma/edger pipeline.

ttT <-

lmFit(y, X) %>%

eBayes %>%

tidy_topTable(of_in = "soldier1") # "soldier1" is one column of X

DB

Perhaps the simplest DB analysis is just a regression of gene-wise DE estimates on motif site count. This is

an approximation to a full multilevel model.
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# regress DE on one motif of interest

summary(lm(logFC ~ NR3C1, data = append_db(ttT)))

# Or, use dbr to regress logFC on motif site count on all immune_motifs: beware multiple testing

ttT %>%

infer_db(which_tfbms = immune_tfbms) %>%

extract_db

Here p_uni is the univariate p-value from a set of simple univariate regressions of logFC on each motif, and

p_cov is the corresponding p-value from a multivariate regression. The latter relates the partial or conditional

relation between a motif and DE, adjusting for the remaining motifs. Any NA’s in the output for this column

reflect colinearities in the design matrix (i.e. motifs are too highly related to be individually estimated).

The traditional TeLiS approach

This approach requires that we first filter some genes to label as categorically DE, e.g. those with a high

logFC. This filtering is not, in itself, a statistical inference. We give three examples of how to do this below.

# 1. genes showing > 20% difference in expression

# (Recalling that logFC is the estimated log2-fold-change of our effect)

ttT_sub = filter(ttT, logFC >= log2(1.2))

# 2. top and bottom deciles (most extreme 20%)

ttT_sub = filter(ttT, ntile(logFC, 10) %in% c(1,10))

# 3. genes whose uncorrected p-values below 0.05 (not an inference):

ttT_sub = filter(ttT, P.Value <= 0.05)

Having chosen one of these, or defined your own, the filtered gene-subset enters as the first argument to

infer_db() below, like so:

ttT %>%

infer_db(ttT_sub = ttT_sub,

which_tfbms = immune_tfbms) %>%
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extract_db

Here “p_par” is the 2 sided p-value for parametric TeLiS (par_p_over and par_p_under are the corresponding

one-tailed values for over and motif-underrepresentation). If perm_telis = TRUE, then p_npar will give a

(computationally costly) permutation p-value for TeLiS.

Chi-squared test

Other ways to relate DE labels to transcription factor motif, e.g. CREB3 motif. Having categorized genes as

“DE” or not, we can examine the relation between this label and the motif count as follows, for example.

# Chi-squared

append_db(ttT,ttT_sub = ttT_sub) %>%

select(gene_subset, CREB3) %>%

table %>%

chisq.test

Appendix

The TFBM matrix

The RNA expression data of interest is the set of genes for which we have a meaningful estimate of differential

RNA expression between exposure groups. The DNA binding motif loci data of interest is the set of loci in

open chromatin which host any motif targeted by at least one known whole-blood factor5. These loci can be

further divided according to the exact region of the gene in which the loci resides: in the start region, in

some exonic region, or both.

In this work we only require that some part of the regulator binding motif j overlaps with the 1000 base

pairs upstream of gene i′s transcription start site, yet other conditions might be equally applied (such as

whether the regulator is in an exon).
5‘Whole blood factor’ in this context refers to the fact that we only considered transcription factor binding sites for

transcription factors that are expressed in cells found in whole blood. ‘Whole blood’ is blood containing plasma and cells. The
cell types we included were (’white’,’unclassifiable (Cell Type)’,’T-lymphocyte’,’platelet’,’natural killer cell’,’monocyte’,’mast
cell’,’macrophage’,’lymphocyte’,’leukocyte’,’dendritic cell’,’B-lymphocyte’). Some transcription factors are not found in any of
these cells so we reasoned that it didn’t make sense to see if they were regulating gene expression patterns in these cells.
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