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Abstract 

Here we examined how a person's exposure to negative parenting (NP) and their cognitive 
bias - their tendency to interpret ambiguous social events as threatening - is associated 
with their peripheral blood gene expression, with and without adjustment for sex, race and 
body-mass index (BMI). Each participant's exposure to negative parenting was measured 
by in-house observation and their "cognitive bias" was captured from their responses to 
the Chen videos. Our results suggest that CTRA may indeed relate to individual cognitive 
responses to social ambiguity: lower expression of CTRA interferons in particular was 
associated with a tendency to interpret the Chen Videos as more threatening, controlling 
sex and race. This relationship becomes insignificant when BMI is introduced. A similar 
pattern was observed in the relation between negative parenting and CTRA expression. 
From these preliminary results we speculate on the possibility that cognitive phenotype 
mediates the impact of negative parenting on immune status. 

Context 

We first consider how cognitive bias (Chen score) and negative parenting (NP) are 
associated with CTRA gene expression in isolation, adjusting for sex, race and bmi. Then we 
tentatively address whether cognitive biases might partially mediate the effect of adverse 
parenting on CTRA gene expression. 

Preprocessing 

31 PaxGene blood RNA tubes were processed in the Fry lab, UNC, using the PaxGene Blood 
miRNA extraction kit per manufacturer’s instructions. All 31 RNA samples were submitted 
to the UNC Genomics core to be run on the Affymetrix platform. Samples showed decreased 
overall RNA yield, with several samples not meeting minimum concentration requirements 
so samples were processed using the Affymetrix Pico Kit prior to hybridization to the 
HuGene 2.0 ST arrays. Signal intensities of the .cel files were then normalized using RMA 
processing (B. M. Bolstad et al. 2003, R. A. Irizarry et al. (2003)). 



These normalized samples were assembled - together with coarse demographic/phenotype 
data - into the Bioconductor ExpressionSet format in the Shanahan lab, UZH. The marginal, 
empirical distributions of our CTRA genes are depicted in the violin plot below. 

Results 

Chen analyses 

Sample phenotype 

Of 31 participants with gene expression data, 25 also had a Chen score. 

Of these, one participant (1092) had somewhat anomolous gene expression measurements 
according to various metrics, including the hierarchical clustering distance (Euclidian, 
agglomerative) and regression residuals, see plots in the Appendix of URL, JC. Regarding 
the latter for example, of those residuals which exceeded three standard deviations, 14 out 
of the 16 were due to subject 1092. Despite these anomolies, removing this subject does 
not qualitatively change our conclusions. Our analysis therefore does not omit this subject. 
To examine the consequence of omission, readers can find the corresponding analysis, 
including this one subject, at URL, JC. 

Table 1a: Sex and race 

 Black Mixed White 

F 3 1 7 

M 6 0 8 

Table 1b: Sex and BMI 

 1st 2nd 3rd 4th 

F 4 2 3 2 

M 3 4 3 4 

Table 1c: Race and BMI 

 1st 2nd 3rd 4th 

Black 2 1 2 4 

Mixed 0 0 1 0 

White 5 5 3 2 

Table 1 describes the demographics of our sample of 25 subjects in terms of self-reported 
race (black, white, mixed), gender (male, female) and bmi (real-valued in the range [12.6, 
19.7]). For the sake of presentation, this table discretizes bmi into 4 quartile bins (1st-4th). 
We found no evidence that these three demographic variables covary in the general 
population of our sample: A Fishers exact test on the race x sex contingency table (p = 
0.535), and two linear-Gaussian regressions of bmi on sex (p = 0.449) and race (p = 0.313) 
revealed no detectable relations. 



We then asked whether race, sex or bmi related to Chen score. Three seperate linear-
Gaussian regressions indicated that bmi (p = 0.00329) - but not race (p = 0.227) or sex (p = 
0.31)- related to Chen scores. Similarly, bmi - but not sex or race - predicted Chen 
conditionally (adjusting for the remaining covariates) at the 𝛼 = 0.05 level. 

Overview: Chen and the CTRA 

We asked various questions about the relation of Chen to CTRA: (Q1) does any gene in the 
CTRA set relate to Chen (Q2) which specific CTRA gene(s) relate to Chen (Q3) under what 
assumptions can we interpret these relations causally. Each question will require a 
different method, as discussed next. 

To formalize Q1, we performed a global score test (see Information Box) of the null 
hypothesis that no CTRA gene predicts Chen. To formalize Q2, we tested the gene-by-gene 
components of the global score statistic used to test Q1. For comparison, we also tested the 
null hypotheses of zero linear relation between Chen and each gene in turn. This latter is 
not based on a multiple regression of Chen on the CTRA set, but on moderated univariate 
regressions of each gene on Chen, corrected for multiple comparisons via Benjamini and 
Hochberg’s method to control the false discovery rate (Smyth, Thorne, and Wettenhall 
2005). (Moderated regression reduces variance in the estimation of standard errors by 
drawing them all towards a common value within a simple Bayesian model.) To formalize 
Q3, we relate the above regression equations to putative causal equations of the data 
generating process, see Pearl (2009). To constrain the set of possible causal 
interpretations, this discussion is based on parallel analyses which adjust for the covariates 
sex, race and bmi. 

To briefly anticipate our results here, we can conclude that at least one CTRA interferon 
gene predicts Chen (Q1). We cannot say much more regarding internal and external 
specificity or causality (Q2-3). 

Q1: Does CTRA predict Chen? 

Our analysis necessarily involves many parameters, or equivalently one high-dimensional 
parameter, which relate Chen to each CTRA molecule. Sadly, there is no uniformly most 
powerful test of a high-dimensional parameter (Jelle J. Goeman, Geer, and Houwelingen 
2006). Different tests are sensitive to detect different alternative hypotheses (different 
possible settings of the unknown p-dimensional parameter of interest). When testing a 
multidimensional alternative, it is therefore important to choose a test which has power for 
those alternative hypotheses which are most plausible. We consider two cases. Our 
primary test has optimal power to detect many small effects - weak relations between Chen 
and many members of the CTRA set - and our secondary test is designed to detect a few 
large effects (amoung mostly zeros). 

The first is the global score test (Jelle J. Goeman, Geer, and Houwelingen 2006), based on a 
linear model of Chen on CTRA. Note that there are more target parameters than 
participants, 25 participants < 50 CTRA molecules, so we need some constraints to 
estimate the model. Namely, our model assumes the regression coefficients weighing each 
CTRA element follow a zero-mean Gaussian distribution (a.k.a. random coefficients). Our 



null hypothesis is 𝐻0: 𝛽 = 0, where 𝛽 = (𝛽1, . . . , 𝛽𝑝) is the weight of each CTRA molecule. 

Note that this global score test is two-tailed: the alternative hypothesis is that one or more 
CTRA interferons have either negative or positive (partial) relation to Chen score. 

Column p1 of Table 2 reports the p-value from the global score test of this hypothesis that 
no gene in the CTRA is associated with Chen (similarly for all 3 CTRA subsets: interferon, 
inflammatory and antibody). We can reject the hypothesis that CTRA interferons has no 
association with Chen. Column p2 of Table 2 shows that this association remains after 
adjusting for self-reported sex and race. Column p3 of Table 2 shows that this association 
weakens when additionally adjusting for a linear effect of bmi. Clearly, bmi is associated 
with gene expression as well as with Chen score. Interestingly, a relation between CTRA 
antibodies and Chen is unmasked after controlling for sex, race and bmi. For a tentative 
interpretation of these results please refer to Q4 below. 

Table 2: Our analysis of the relation between Chen, the CTRA gene set and its component 
subsets, with and without covariate adjustment (see Q1). This table presents p-values from a 
global score test on a hyperparameter in an empirical Bayesian model, and is an alternative 
to classical tests of a point null hypothesis against a high dimensional alternative, even when 
the number of genes exceeds the number of samples. This test has optimal expected power in 
the neighbourhood of the null hypothesis. We used a permutation null distribution which 
requires the assumption that there is no relationship between gene expressions on the one 
hand, the covariates (bmi, sex and race) and the censoring mechanism on the other hand: 
permuting destroys these associations. The main advantage of the permutation-based P-value 
is that it gives an ‘exact’ P-value, which is guaranteed to keep the alpha level provided enough 
permutations are used. This is especially useful for smaller sample sizes like ours, where we 
may not trust the normality of the distribution of our score statistic. Note that a significant 
global test does not mean that every interferon gene is associated with Chen. It means that the 
subjects with similar Chen have relatively similar CTRA interferon expression profile. It also 
means that there is potential to predict Chen from interferon gene expression. 

 p1 p2 p3 

Inflammatory 0.787 0.556 0.801 

Interferon 0.032 0.073 0.265 

Antibody 0.690 0.254 0.046 

All 0.033 0.084 0.285 

To better understand the relation between Chen and CTRA interferons, we plot the relation 
between Chen and each CTRA molecule in Appendix "Chen and CTRA". This plot shows a 
negative relation between Chen and interferon on average. There are various ways to 
quantify this negative relationship. For illustration purposes, we chose a mixed model 
complementary to that in the preceding paragraph, namely CTRA on Chen rather than Chen 
on CTRA. In particular, we infered the fixed effect of Chen on CTRA gene expression in a 
multilevel linear mixed model with independent random intercepts for both participant 
and CTRA gene (95% confidence interval = [-0.353, -0.00235]). This gives some confidence 
that the set of CTRA coefficients is negative on average. 



Our secondary analysis also aimed to answer Q1, but with more sensitivity to detect sparse 
alternative hypotheses (a few large effects amoung mostly zeros). We did a permutation 
test of the claim that Chen scores carry no information about the CTRA interferons. This 
test was based on the maximum absolute t-statistic (over the set of pairwise regressions of 
each gene in turn on Chen). This procedure was designed for its power to detect sparse 
alternative hypotheses, i.e. a few large parameters relating CTRA to Chen, among mostly 
zero parameters (Jelle J. Goeman, Geer, and Houwelingen 2006). Note that if the alternative 
is not sparse, then this procedure is provably less powerful than the global score test above 
(which is optimal to detect many small effects). In practice, we seperately regressed each 
gene in the 50 CTRA on Chen, and calculated the maximum absolute t-statistic over this set. 
We assessed the significance of this relation with reference to the empirically-derived 
permutation null distribution arising from 1000 permutations of the Chen scores. This 
procedure yielded a p-value of p = 0.2. This p-value is larger than that under the global test 
above, which likely reflects the test's lower power to detect the many true small 
associations between CTRA genes and Chen. 

Q2: Which specific genes predict Chen? 

To gain more internal specificity, we decomposed CTRA interferon global score test result 
into it's gene-specific components. Figure 2 depicts which of these genes contribute 
positively to a high value of the test statistic and which do not contribute. It shows that the 
relation between Chen and CTRA interferons may be narrowed down to a subset of the 29 
CTRA interferons (the subtree beneath the bold root branch). We would not want to 
overstate this specificity, because it was not observed in our parallel analysis (described 
above, which ommitted subject 1092 could not reduce the significant effect of CTRA 
interferons to any CTRA interferon subset). JC: no bold line 

To assess which specific CTRA genes - as opposed to CTRA (sub)sets - could be related to 
Chen, we regressed each gene on Chen in turn in the linear-Gaussian framework. A 
visualization of the linear relation between Chen and interferon is given in the Appendix, 
where we also report the multiplicity-corrected p-values. In brief, no single CTRA gene is 
marginally significant at the corrected 𝛼 = 0.05 level. In light of the significant relation 
described in the previous section, between Chen and CTRA subsets en masse, this null 
result can be viewed as a false negative, which reflects insufficient power to detect 
individual gene-wise relations over noise. In contrast, our gene-set global score test 
achieves a power boost by pooling across multiple weak signals. 

Q3: What about causality? 

In principle, (predictive) regression equations can be used as a tool to identify/test causal 
parameters of the underlying data generating process, see Pearl (2009). This is generally 
true in the setting of randomized experiments. In the non-experimental setting however, 
this identification is only possible conditional on a well-specified structural model, i.e. 
when the underlying causal structure of the data generating system can be safely assumed, 
up to it's unknown paramaters. These structural assumptions are often untested or 
untestable. Nonetheless, this framework offers an elegant way to precisely express the 
conditions required for a predictive (regression) parameter to be interpreted as a causal 



(structural) parameter. Conversely, it offers an elegant way to enumerate different causal 
models which are consistent with the data. From these general considerations it should be 
clear that our specific data will not perfectly distinguish between different underlying 
causal models, as we discuss informally below. 

Our observation that Chen and CTRA interferons are related only if we do not adjust for 
bmi is consistent with - at least - three underlying causal models, see Figure 3. In one, bmi 
confounds the relation between Chen and CTRA interferons (top plot, below). In the other 
two, bmi somehow mediates this relation (middle, bottom plot). Formally these three cases 
are difficult to distingish because the imply the same conditional independence structure 
on observables (namely, independence of Chen and CTRA interferons conditional on bmi, 
but marginal dependence between Chen and CTRA otherwise). Note that the preceding 
interpretations rest on the - very strong - assumption that our observed covariates - bmi, 
sex, race - are the only confounding causes in the data generative process (i.e. common 
linear causes of both gene expression and Chen). Below we will revisit mediation more 
formally, both full mediation (conditional independence between treatment and outcome 
given the mediator) and partial mediation (both a response to mediator and a response to 
treatment). 

We also noted above that a relation between CTRA antibodies is unmasked when we adjust 
for all three covariates: bmi, sex and race. One interpretation here is that adjusting for 
these covariates increases statistical power by explaining/eliminating some independent 
residual variation in Chen. One puzzling feature of this relation is that Chen relates 
negatively to one of the two CTRA antibodies, but positively to the other. It will be 
interesting to assess whether this result generalizes to future datasets. 

Whole-chip Chen analysis 

We addressed 3 questions about the relation of CTRA subsets to Chen scores above. Here 
we move beyond this special focus, using a global test to ask whether the entire 53617-
gene expression profile - not just CTRA - could predict Chen scores. This agnostic approach 
yeilded a p-value of 0.226. We then asked whether, adjusting for race, sex and bmi, the 
whole-chip could predict Chen scores (p = 0.36). 

Summary of Chen analyses 

Our analysis attempted to infer the relation between Chen and CTRA subsets. Accordingly, 
the analysis corrected for some systematic and random sources of error, by appropriate 
covariate and multiplicity adjustment. In general, covariate adjustment offers one way to 
limit systematic error, i.e. causal false positives attributable to omitted confounding 
variables, while multiplicity adjustments and regularization limit sampling error, i.e. false 
positives due to sampling variance, aggregated across many parameters or tests. 

We rejected the null hypothesis that Chen is unrelated to CTRA interferons by means of a 
global score test. This holds when correcting for sex and race, but not bmi. 



Applied considerations 

From the perspective of its utility to physicians and physician researchers, in the fields of 
allergy, immunology etc. He thought to frame the results as follows: 

The change to interferons may indicate that the host defense capability, which would 
protect the host, is diminished or perturbed. Modified host defenses could account for a. 
increased asthma ( not sure if he meant exacerbations or susceptibility to asthma onset) b. 
modified/exacerbated response to air pollution or other environmental insults c. 
exacerbation of illness, and d.perhaps malignancies in predisposed populations. That BMI 
was observed to abolish the relationship between the CTRA sets and the Chen score raises 
some interesting questions, both at the molecular and sociological level. 

Overview of negative parenting NP and CTRA analyses 

Putting Chen aside for the moment, this section examines the relation between negative 
parenting and CTRA. This section follows the same structure as the preceeding discussion 
of Chen and CTRA. 

Here we ask whether a person's experience of negative parenting (NP) relates to their 
peripheral blood CTRA gene expression. Each participant's experience of NP was captured 
by a single real-valued score. We examined the relation of this NP score to CTRA gene 
expression profiles within peripheral whole blood, with and without adjustment for sex, 
race and body-mass index (BMI). 

Sample phenotype 

Of 31 participants with gene expression data, 28 also had an NP score. 

We asked whether race, sex or bmi related to NP score. Three seperate linear-Gaussian 
regressions indicated that neither bmi (p = 0.902) nor sex (p = 0.251) predicted negative 
parenting, but self-reported race did (p = 0.00151), see supplementary Figure "NP and 
race". 

Q1: Does CTRA predict NP? 

Column p1 of Table 3 reports the p-value from the global score test of the hypothesis that 
no gene in the CTRA is associated with NP (similarly for all 3 CTRA subsets: interferon, 
inflammatory and antibody). The table shows that CTRA en masse has some association 
with NP, but that this cannot be reduced to any CTRA subset (although CTRA interferons 
are marginally significant). Column p2 of Table 3 shows that this association is diminished 
after adjusting for self-reported sex and race. Column p3 of Table 3 shows that this 
association is also weaker when additionally adjusting for a linear effect of bmi. 

Table 3:The relation between NP, the CTRA gene set and its component subsets, with and 
without covariate adjustment (see Q1). 

 p1 p2 p3 



Inflammatory 0.168 0.950 0.872 

Interferon 0.061 0.228 0.107 

Antibody 0.604 0.915 0.915 

All 0.030 0.200 0.091 

To better understand the relation between NP and CTRA interferons, we plot the relation 
between NP and each CTRA molecule in the Appendix "Negative parenting and CTRA". 
Despite no statistically significant relation between NP and interferons, this plot does show 
some indication of a negative relation between NP and interferons (only 3 of 29 interferons 
had a positive relationship with NP). For comparison with the preceding analysis of Chen 
on CTRA interferons, we chose to quantify this with a mixed model complementary to that 
in the preceding paragraph, namely CTRA on NP rather than NP on CTRA. In particular, we 
infered the fixed effect of NP on CTRA gene expression in a multilevel linear mixed model 
with independent random intercepts for both participant and CTRA gene (95% confidence 
interval = [-0.28, 0.00792]). Finally, for comparison with the preceding analysis of Chen on 
CTRA, we seperately regressed each gene in the 50 CTRA on NP, and calculated the 
maximum absolute t-statistic over this set. We assessed the significance of this relation 
with reference to the empirically-derived permutation null distribution arising from 1000 
permutations of the NP scores. This procedure yielded a p-value of p = 0.111. This p-value 
is larger than that under the global test above, which likely reflects the test's lower power 
to detect the many true small associations between CTRA genes and NP. 

Q2: Which specific genes predict NP? 

For comparability with our analysis of Chen, we decomposed CTRA interferon global score 
test result into it's gene-specific components. Figure 4 depicts which of these genes 
contribute positively to a high value of the test statistic and which do not contribute. 

Q3: What about causality? 

Our observation that NP and CTRA interferons are related only before adjustment for 
covariates (sex, race, bmi) may reflect that one covariate is a confounding variable, see 
Figure 3 for an analogy. 

Whole-chip NP analysis 

In the preceding analysis, we addressed 3 questions about the relation of CTRA subsets to 
NP scores. Here we move beyond this special focus, using a global test to ask whether the 
entire 53617-gene expression profile - not just CTRA - could predict NP scores. This 
agnostic approach yeilded a p-value of 0.271 . We then asked whether, adjusting for race, 
sex and bmi, the whole-chip could predict NP scores (p = 0.832). 

Summary of NP analyses 

Our analysis attempted to infer the relation between NP and CTRA subsets. We rejected the 
null hypothesis that NP is unrelated to CTRA interferons by means of a global score test. 



Relating Chen, negative parenting and the CTRA subsets 

Motivation 

Adverse parenting has an enduring impact on how children come to cognitively interpret 
social events - their cognitive "bias" or "schemata". It also leaves an enduring biological 
trace, notably immune gene expression in the 53-gene 'Conserved Transcription Response 
to Adversity' set (CTRA), comprised of interferon, inflammatory and antibody genes. It is 
unclear whether these cognitive and immune outcomes are independent consequences of 
NP, or for example, whether NP-induced cognitive bias mediates immune changes through 
some brain-immune interactions. In this latter case, Chen and CTRA might be proximal and 
distal effects of NP, and aim to quantify the "natural indirect effect" of NP on CTRA, that is 
mediated by Chen. (The natural mediated effect, is roughly the expected change in the 
CTRA when we let the Chen change as if the NP status had changed, when in fact we have 
(counterfactually) fixed NP. Similarly for the natural direct effect of NP on CTRA. 

In practice, it is impossible for us to identify causal mediation without invoking strong and 
untestable assumptions about the underlying data generating process, see Information 
Box: What is identification?. These include no unobserved heterogeniety - e.g. no 
differences among subjects in CTRA reactions to NP and Chen, or Chen to NP, no 
confounding - e.g. common causes of Chen and CTRA, and no selection effects - e.g. not 
simple random sampling of subjects. It is important that these assumptions are 
conceptually meaningful and unambiguous, and that we can evaluate sensitivity to these 
assumptions when possible. 

We therefore first define the target quantity or causal estimand we wish to infer, then we 
assess identifiability of this estimand, then discuss statistical inference. 

Practicalities 
Table 4: Naive mediation analysis of NP effect on CTRA gene expression. Column 1 
recapitulates the main result of the preceding section: CTRA is significantly associated with 
NP. Column 2 tests this same hypothesis on a smaller sample of subjects, those for whom we 
have both Chen and NP scores. Column 3, reexamines this relation having partialled out a 
linear effect of Chen. It more fair to compare this relation with that in Column 2 than Column 
1 (which has a different, larger sample.) 

28 subjects 23 subjects (a) 23 subjects (b) 

0.168 0.660 0.528 

0.061 0.269 0.602 

0.604 0.419 0.280 

0.030 0.195 0.469 

Two additional issues complicate the analysis of this mediation hypotheses. First, there is 
no clear statistical framework for mediation analysis with for gene-sets (or high-
dimensional outcome variables in general). Traditional mediation analysis is not designed 
to contend with this issue. We believe this issue is ripe for theoretical contributions. Our 



provisional work-around is simply to apply mediation methods designed for univariate 
outcomes repeatedly - one for each CTRA molecule - then simply correct for multiple 
comparisons. 

Our second complication is an artifact of our specific, small sample. In particular, the 
pattern of missing measurements for negative parenting and Chen. Recall that there are 31 
subjects with CTRA measurements. 28 have NP score. 25 have Chen score. With these 
respective sample sizes, we can summarize the basic results detailed above as: 

(1) CTRA is significantly related to negative parenting (without any adjustments) at the 
0.05 level. (2) CTRA interferon gene set is significantly related to Chen (without any 
adjustments) at the 0.05 level. 

Unfortunately, neither of these conclusions hold at the conventional 0.05 level if we restrict 
the sample only to those subjects who have both NP and Chen scores. This complicates the 
most naive mediation analysis, whereby we compare the effect of NP on CTRA with and 
without adjustment for Chen (see (Baron and Kenny 1986)). Without adjustment the effect 
of NP is insignificant (Baron and Kenny 1986). 

A slightly less naive approach than (Baron and Kenny 1986), is due to Sobel (Sobel 1982). 
This Sobel test nonetheless is known for its low power in small samples. The null 
distribution depends on an asymptotic Gaussian distribution, which is known to fail for 
small samples such as ours, see (MacKinnon et al. 2002). This motivates non-parametric 
methods, such as the bootstrap (Preacher and Hayes 2004). However we postpone such an 
analyses, partly because all these preceding methods have been challenged by statisticians 
and epidemiologists, based on concerns about identification, rather than inference 
(Bullock, Green, and Ha 2010; Greenland and Robins 1986; J. S. Kaufman, Maclehose, and 
Kaufman 2004; Pearl 2009). Thus, while some of these methods produce better standard 
errors, they do not address systematic bias with respect to underlying causal parameters, 
due to counfounding, selection and heterogeneity (Bullock, Green, and Ha 2010). 

Another approach to mediation 

Mediation effects can be defined formally in terms of potential outcome or causal graphs 
(see Information box "Modern mediation"). Under certain conditions, mediation effects 
defined in this way can be identified from data. Here we focus on the average causal 
mediation effects (ACME) of mediator Chen in the relation between NP and CTRA. This 
ACME represents the population averages of subject-specific causal mediation. In 
particular, this ACME (aka ‘natural indirect effect’, the term "total indirect effect" is used by 
Robins (2003)) quantifies how much NP acts through mediator Chen to alter CTRA 
expression (Greenland and Robins 1986; Pearl 2009). We address the high-dimensionality 
of CTRA, by assessing the average causal mediation effect ACME for each gene seperately, 
then report simultaneous (multiplicity corrected) confidence intervals for the 50 
counterfactual parameters of interest. Unfortunately for the mediation hypothesis, there 
are no non-zero ACMEs, even before correction for multiplicity (see Appendix "ACME"). 
There are no non-zero ACMEs after adjusting for pretreatment covariates sex, race and 
bmi. 



Identification conditions required by (Baron and Kenny 1986) 

Traditional "operational definitions" of mediation (Baron and Kenny 1986) are based on 
linear models (see (Kraemer et al. 2001) for a critique). These definitions are not general, 
but are tied to specific inference strategies, e.g. testing parameters derived from a set of 
linear equations (by Sobel test, Bootstrapping, Monte Carlo, etc) (Preacher and Hayes 
2004). In fact there do exist conditions which gaurentee that the popular product of 
coefficients estimator (Baron and Kenny 1986), which is based only on observed outcomes, 
has a causal interpretation (in terms of unobserved potential outcome parameters). These 
assumptions can be articulated in different vocabulary: conditional sequential ignorability, 
exogeneity, independent errors, etc, and pose a formidable obstactle to a causally 
interpretable mediation analysis (Bullock, Green, and Ha 2010). The following bullet points 
detail these conditions informally, and discuss their (im)plausibility in our application. 

• No omitted confounds on any of the three paths: i.e. all common causes of Chen and 
CTRA, NP and Chen, and NP and CTRA measured and controlled (including common 
"shared" method effects). 

This assumption can be represented as 𝐶𝑜𝑣(𝑈𝐶ℎ𝑒𝑛, 𝑈𝐶𝑇𝑅𝐴) ≠ 0 where 𝑈𝐶ℎ𝑒𝑛, 𝑈𝐶𝑇𝑅𝐴 are 
ommitted/unobserved causes of Chen and CTRA molecules respectively. We must explicitly 
justify the assumption that ommitted causes of Chen are unrelated to ommitted causes of 
CTRA, when Chen is fixed. (Interestingly, even though experimentally randomized NP 
treatment would ensure independence of NP with spurious causes of CTRA, denoted 𝑈𝐶𝑇𝑅𝐴, 
it says nothing about whether Chen is independent of these causes, which is crucial for 
unbiasedness. This illustrates that mediation analysis is demanding even in randomized 
experiments. Thus a method is biased due to unobservables that covary with the 
treatment, in particular those which also influence outcome.) 

• No feedback loops (simultanious reverse causation) - Chen does not effect NP - Chen 
and CTRA do not cause NP - CTRA does not cause Chen 

In fact, it is likely that NP is an artifact of Chen, because of the dyadic interactions between 
parent and child. CTRA of the child might affect NP, if for example sick children make for 
tired and impatient parents. CTRA may influence Chen through the well-known effect of 
immune factors on the brain, and on subjective affect. It is possible that suitable 
instrumental variables may be found to address this problem, though we do not pursue this 
here. 

• No unobserved heterogeneity (no non-additive interaction between NP treatment and 
subject index): the average treatment effect therefore equals the unit treatment effect. 

Differences in quality and time spent with parents (i.e. amount of NP treatment), or other 
intrinsic resilience factors, may buffer the impact of NP for some children but not others. 
Differences in the impact of NP on the child's viral or bacterial environment also pose a 
problem. It may be misleading to estimate the average direct or indirect effects for the 
entire sample. Sadly problems of unobserved heterogeneity - of the effects of NP on Chen 
and Chen on CTRA - cannot be resolved by repeated interventions of (NP, Chen) and 
repeated measures of CTRA, because of the nature of these variables. While homogeneity 



assumptions do little harm when infering total causal effects, it ruins inference on indirect 
effects: regression of CTRA on NP and Chen will not recover the average direct effect of NP, 
even if both NP and Chen had been experimentally manipulated! (see Glynn, 2009; Pearl, 
2001; Robins, 2003). One consequence of heterogeneity is that our approach produces 
estimates of indirect effects that apply not to the entire sample but only to those subjects 
whose Chen was affected by NP (e.g., Angrist, Imbens, & Rubin, 1996). To see why, consider 
a clinical trial that we conduct to learn the effect of a pill. All treatment-group subjects are 
asked to take the pill. Some refuse. We have no way of learning how these “noncompliers” 
would have been affected by the pill if they had taken it. We are therefore unable to 
estimate the average effect of taking the pill for all subjects in our sample. We cannot know 
which subjects’ Chen does not change with parental NP, which is on par with refusing to 
take a treatment in a randomized trial. Thus, in addition to being unable to estimate an 
average indirect effect for all of our subjects, we often cannot even know which subjects 
our estimates apply to when we conduct a mediation analysis. 

• No observable heterogeniety due to treatment x mediator interaction (i.e. linear 
mediation or "no moderation", which is a strong restriction). 

Mediator–treatment interactions are easily accomodated in modern approachs, such as 
(Imai, Keele, and Yamamoto 2010). We must assume that NP does not change the impact of 
Chen on CTRA. Otherwise, we should estimate average indirect effects for homogeneous 
subgroups rather than a single average for the entire sample. Discussions of “moderated 
mediation” (Muller et al., 2005) consider causal heterogeneity but seldom discuss the 
problem that it poses to the calculation of average mediation effects. If NP and Chen have 
been experimentally manipulated, and if their effects can be modeled as functions of 
observed variables and independent random factors, and if one has a sufficient number of 
subjects for each level of sensitivity to changes in NP and Chen, then methods of estimating 
moderated mediation can solve the problem posed by causal heterogeneity. 

• Linear parametric mediation analysis also makes all of the standard assumptions of 
the general linear model (i.e., linearity, normality, homogeneity of error variance, and 
independence of errors). 

Misspecification may bias the indirect and direct effects even if identification holds. So, 
using a linear effects model despite underlying nonlinearity will bias an identified indirect 
effect. 

• No measurement error for Chen and CTRA (e.g. there is no measurement error in 
Chen). 

This will downwardly bias the mediation effect of Chen. The underlying data-generating 
process involves latent variables such as cognitive bias, which we estimate - imperfectly - 
by Chen. Note that we can neither observe, nor manipulate cognitive bias. In theory, one 
solution is to adjust estimates - using Structural Equation Modeling - or conduct sensitivity 
analyses assuming different values of reliability. We do not pursue this here. 

• Sample selection is not influenced by NP, CTRA or CTRA. 



Identification conditions for our mediation analysis 

We now discuss these conditions again with a slightly different vocabulary, which may be 
more familiar to some readers. 

The literature on mediation based on a potential/counterfactual framework has primarily 
focused on identification rather than estimation, see Information box: What is 
identification? Indirect and direct effects can be nonparametrically identified under two 
assumptions called "sequential ignorability" (Imai, Keele, and Yamamoto 2010). 

The first assumption is that NP assignment must be conditionally ignorable, i.e. statistically 
independent of potential CTRA outcomes and potential Chen mediators, given some set of 
pretreatment confounds. This is akin to saying that factors influencing treatment NP 
assignment are independent of factors influencing CTRA and Chen, when NP is fixed by 
intervention (Pearl 2014). This independence would hold unconditionally, if NP were 
randomized or as-if randomized in a natural experiment, or conditionally, given subjects 
matched on any "backdoor set" of observed pretreatment confounder variables (or the 
propensity score). 

The second assumption is that Chen is as-if randomized (independent of the potential 
outcomes of CTRA), given observed pretreatment confounds. This is akin to saying that the 
causes of Chen are independent of the causes of CTRA, having fixed NP and Chen within 
each subpopulation defined by levels of the pretreatment covariates/confounds. This can 
be achieved if and when we can condition (match) on another backdoor set of 
pretreatment covariates that affect both the Chen and CTRA. 

Under sequential ignorability, we must assume that all the joint pretreatment causes of 
Chen and CTRA in the data generating process are known and observable, otherwise 
indirect and direct effects will not be identified. This assumption is strong (cannot be 
tested by observed data), and we cast doubts on this in the previous section. 

Inference (assuming the identifiability above) 

In the traditional mediation literature (Baron and Kenny 1986), our mediation effects 
would be estimated using a model for the mediator (Chen, given NP) and a model for the 
outcome (CTRA, given NP and Chen), as given in the last two equations from this triplet: 

𝑇𝑖 = 𝑈𝑇𝑖

𝑀𝑖 = 𝑎𝑀 + 𝑏𝑀,𝑇𝑇𝑖 + 𝑐𝑀,𝑍𝑍 + 𝑈𝑀𝑖

𝑌𝑖 = 𝑎𝑌 + 𝑏𝑌,𝑇𝑇𝑖 + 𝑐𝑌,𝑍𝑍 + 𝑑𝑌,𝑀𝑀+𝑈𝑌𝑖

 

for subjects 𝑖. Where 𝑇𝑖 ,𝑀𝑖 , 𝑌𝑖 are the value of the treatment NP, mediator Chen and CTRA 
outcome for subject 𝑖. 𝑍𝑖 is a vector of pretreatment covariates/confounds, ideally a 
backdoor set. We ommit an index for different CTRA molecules for simplicity (recall that 
CTRA is in fact a vector valued outcome). These equations satisfies sequential ignorability if 



𝐶𝑜𝑣(𝑈𝑀𝑖
, 𝑈𝑌𝑖|𝑍𝑖) = 𝐶𝑜𝑣(𝑈𝑇,𝑖 , 𝑈𝑀,𝑖|𝑍𝑖) = 𝐶𝑜𝑣(𝑈𝑇𝑖 , 𝑈𝑌𝑖|𝑍𝑖) = 0 (Imai, Keele, and Yamamoto 

2010; Pearl 2014). 

The indirect effect is estimated as the product of 𝑑𝑌,𝑀
^ 𝑏𝑀,𝑇

^ . 

Our naive analysis above assumes that NP does not moderate the effect of Chen, that both 
models are linear. 

Sensitivity of inference to identification assumptions 

Our sensitivity analysis is based on the fact that - if NP is as good as randomized - then the 
second sequential ignorability assumption can be encoded in the correlation coefficient 
between the two error terms from the mediator and outcome models. Let 𝜌 represent this 
correlation. When 𝜌 = 0, the two error terms are uncorrelated, implying that sequential 
ignorability holds. By varying 𝜌 and observing how the indirect and direct effects change 
under different possible violations of sequential ignorability, we can assess sensitivity to 
this assumption. 

The general strategy is to infer the indirect effect assuming different values of the 
unidentifiable sensitivity parameter, i.e. the strength of Chen-CTRA confounding. We check 
the robustness of our conclusion, obtained under the sequential ignorability assumptions, 
via changing the assumed covariance or correlation or between 𝑈𝑀 , 𝑈𝑌 . A nonzero 
correlation parameter can be interpreted as the existence of omitted variables that 
influence both mediator 𝐶ℎ𝑒𝑛𝑖 and the potential outcomes 𝐶𝑇𝑅𝐴𝑖 . 



 

ACME versus latent endogeneity: correlated innovations 𝑈𝐶𝐻𝐸𝑁 , 𝑈𝐶𝑇𝑅𝐴 

In particular, 𝜌 is a sensitivity parameter representing the non-identified correlation 
between the residuals. A sensitivity analysis is obtained by varying the fixed 𝜌. The 
sensitivity analysis varies the 𝜌 from −0.9 to +0.9. A graph of the indirect effect is shown in 
Figure, including a 95% confidence interval. This shows that there is no evidence for a non-
zero ACME under any condition. 

Information box: Defining and representing causation 

Modern definitions of total, and path-specific effects - direct and indirect - are general, and 
not tied to any specific statistical model. 

A causal variable is defined as any variable which changes the potential outcome of another 
variable. This idea can be interpreted as follows. First suppose we know the equations 



which dictate the natural directions of causation between variables in some system. Next 
override the equation governing one focal variable, and instead switch this variable 
between two different values. By definition, this focal variable is a cause of any variable 
which responds to this intervention (through the remaining equations). The difference 
between these definitions is purely notational; potential outcome definitions can easily be 
converted to structural definitions. Potential outcomes can be viewed as a short hand 
notation for general structural equations (not necessarily linear or parametric). For 
example, take the following trivial, linear parametric structural equation model: we can 
abbreviate the structural causal equations 𝐶𝑇𝑅𝐴𝑖(𝑋𝑖 = 1) = 𝑑 + 𝑐 + 𝑒𝑖 , and 𝐶𝑇𝑅𝐴𝑖(𝑋𝑖 =
0) = 𝑑 + 𝑒𝑖 as 𝐶𝑇𝑅𝐴𝑖(1) and 𝐶𝑇𝑅𝐴𝑖(0) respectively. Note that only one potential outcome 
can be observed, the other is counterfactual. Causal inference, i.e. on 𝐶𝑇𝑅𝐴𝑖(1) − 𝐶𝑇𝑅𝐴𝑖(0), 
thus requires identifying conditions which justify imputing the missing counterfactual. See 
(Pearl 2014) to explicitly compare the structural formulation of mediation side by side with 
the potential outcome formulation. 

Causation is defined ceteris parabis, i.e. at the level of each individual "unit" subjected to 
intervention. Various statistical methods aim to infer population parameters of these unit-
level causal effects, such as propensity score matching and nearest-neighbor matching 
(which often uses the Mahalanobis metric, also called Mahalanobis matching), attempt to 
correct for the assignment mechanism by finding control units similar to treatment units 
on variables which confound causal effects (implied by ceteris parabis). 

Information box: what is identification? 

A parameter is said to be identified if different parameter settings of the underlying data 
generating process imply different distributions over observed variables. This 
identifiability - or lack thereof - is not a statistical problem related to the challenges of 
statistical inference with small samples. Pearl (2009) provides one way to think about 
identification. Dependence between observed variables reflects some unknown mix of 
causal and noncausal ("backdoor") effects. A causal effect is identified when the observed 
association can been adjusted somehow to remove these noncausal components. For 
nonparametric identification, the analyst would describe the set of assumptions that will 
allow us to identify a causal effect without any distributional or functional form 
assumptions. 

To take a famous example, randomized treatment and the SUTVA identification (Rubin 
1974) together nonparametrically identify the average total effect. To identify the indirect 
and direct effects, additional assumptions are necessary, e.g. "sequential ignorability". 

Causal identification assumes the investigator has domain knowledge to judge the 
plausibility of no confounding type of assumptions which underly all mediation methods, 
whether under the rubric of sequential ignorability (e.g., Imai et al., 2010b), uncorrelated 
error terms, or graphical criterea. The assumptions identifying mediation can be stated 
most succinctly in the latter. 

Identification conditions can be expressed in diverse ways, e.g. judging conditional 
independencies among counterfactual variables, often called strong ignorability, 



conditional ignorability , or sequential ignorability, presents a formidable task without 
structural models. Efforts to replace ignorability vocabulary - with notions such as no 
unmeasured confounders, no unmeasured confounding, as if randomized, effectively 
randomly assigned, or essentially random - create ambiguity. First, the notion of a 
confounder varies significantly from author to author. Some define a confounder (say of the 
NP-CTRA relationship) as a variable that affects both NP and CTRA. Some define 
confounder as a variable that is associated with both NP and CTRA. Others allow for a 
confounder to affect NP and be associated with CTRA. Worse yet, the expression no 
unmeasured confounders is sometimes used to exclude the very existence of such 
confounders and sometimes to affirm our ability to neutralize them by controlling other 
variables, not necessarily confounders. Second, the interpretations have taken sequential 
ignorability as a starting point and consequently are overly stringent – sequential 
ignorability is a sufficient but not necessary condition for identifying natural effects. 
Weaker conditions can be articulated in a transparent and unambiguous language which 
provide a greater identification power and a greater conceptual clarity. 

Information box: Alternatives to sequential ignorability conditions for 

identification 

Instrumental variables offer a very different answer from a causal mediation analysis 
(Keele 2015). Mechanisms based on IV have the advantage that one can allow for the 
possibility of unobserved confounding between the mediator and the outcome. However, to 
identify the indirect effect, one must assume that the direct effect is zero. The assumption 
that the direct effect is zero is widely referred to as the exclusion restriction (Angrist, 
Imbens, & Rubin, 1996). Thus, one must assume that there is only an indirect effect, which 
implies that the effect of the treatment is entirely mediated. Under this form of mechanism, 
we must assume that the effect of a NP only works through Chen: There cannot be any 
other mechanisms for the intervention. 

Statistically "controlling" for M in the analysis (by including M in the regression equation) 
does not physically disable the paths going through M ; it merely matches samples with 
equal M values, and thus induces spurious correlations among other factors in the analysis, 
see (Pearl 2014). This can be readily shown using classical path-tracing rules. Such 
dependence cannot be detected by statistical means, so theoretical knowledge must be 
invoked to identify the sources of these correlations and control for common causes (so 
called "confounders") of M and CTRA whenever they are observable. This approach to 
mediation has two major drawbacks. One (mentioned above) is its reliance on the untested 
assumption of uncorrelated errors, and the second is its reliance on linearity and, in 
particular, on a property of linear systems called effect constancy (or no interaction): The 
effect of one variable on another is independent of the level at which we hold a third. This 
property does not extend to nonlinear systems; in such systems, the level at which we 
control M would in general modify the effect of T on CTRA. For example, if the output CTRA 
requires both T and M to be present, then holding M at zero would disable the effect of T on 
CTRA , while holding M at a high value would enable the latter. 



Information Box: Modern mediation 

Although one could define mediation statistically, we follow the causal definition. 

The conventional mediation analysis entails fitting a set of linear regression models: 
``mediation effects'' are defined in terms of these estimated model parameters. One 
problem with defining mediation in terms of statistical changes induced by adding a third 
mediator variable into a regression equation, is that mediation is inherently a causal notion 
hence should not be defined in statistical terms. Modern approaches therefore define 
mediation in terms of potential outcomes, or equivalently causal graphs. In the language of 
the latter, a mediator is then an intermediate variable that lies on the causal path from the 
treatment to the outcome. This definition is grounded in the notion of a causal path and 
emphasizes the difference between "fixing a variable" and "statistically adjusting for" 
(conditioning on) a variable as in regression. 

To illustrate our measure of ACME more formally, consider a binary measure of negative 
parenting, a variable we call 𝑡 which takes 0 or 1. We will now define indirect effect of NP - 
via mediator Chen 𝑀 - within the modern framework. 𝑀𝑖(𝑡) is the effect of NP on Chen for 
subject 𝑖 under treatment (NP) status 𝑡. Let 𝐶𝑇𝑅𝐴𝑖(𝑡,𝑚) denote the potential outcome if NP 
and Chen took values 𝑡,𝑚 respectively. We only observe one of these potential outcomes 
𝐶𝑇𝑅𝐴𝑖(𝑡𝑖 , 𝑀𝑖(𝑡𝑖)), where 𝑀𝑖(𝑡𝑖) is the observed value of Chen at the observed NP level 𝑡𝑖 . 
𝐶𝑇𝑅𝐴𝑖(𝑡,𝑀𝑖(𝑡)) is the effect of 𝑡 on CTRA, which in general and be transmitted both 
indirectly, through 𝑀𝑖(𝑡), and "directly" (i.e. not through M but possibly through some 
independent mediators). Let the total causal effect for unit (subject) 𝑖 be 

𝜏𝑖 = 𝐶𝑇𝑅𝐴𝑖(1,𝑀𝑖(1)) − 𝐶𝑇𝑅𝐴𝑖(0,𝑀𝑖(0)) 

and the unit-level indirect effect be 

𝛿𝑖 = 𝐶𝑇𝑅𝐴𝑖(𝑡,𝑀𝑖(1)) − 𝐶𝑇𝑅𝐴𝑖(𝑡,𝑀𝑖(0)). 

This latter relates to the following counterfactual question: how would CTRA change in this 
indidividual if we were to physically (counterfactually) change Chen's value under 𝑡 = 0 
(no negative parenting) to that under 𝑡 = 1 (negative parenting), while keeping NP at its 
observed value 𝑡? Because these two values of Chen would naturally occur as responses to 
changes in NP, this quantity formalizes the notion of a causal mechanism that the causal 
effect of the treatment is transmitted through changes in the mediator of interest. Similarly, 
we define the unit direct effect, corresponding to all other possible causal mechanisms 
(sometimes refered to en masse as the "direct effect"), as: 

𝛾𝑖 = 𝐶𝑇𝑅𝐴𝑖(1,𝑀𝑖(𝑡)) − 𝐶𝑇𝑅𝐴𝑖(0,𝑀𝑖(𝑡)). 

The counterfactual question here is: how would CTRA respond to NP change 𝑇𝑖 = 0 to 𝑇𝑖 =
1, if (counterfactually) Chen was held constant? 

Mediation analysis creates an identification problem. The quantity 𝐶𝑇𝑅𝐴𝑖(1,𝑀𝑖(0)), for 
example, is unobservable, but to estimate the mediation effect we need assumptions which 
link this unobserved counterfactual to observed quantities. We examine these assumptions. 



Such definitions can easily be extended to continuous treatments (NP not binary) (Imai, 
Keele, and Yamamoto 2010). 

Information Box: CTRA gene set analysis 

Three broad approaches have been historically used to test whether some observable 
phenotype, outcome or treatment relates en masse to the gene expression across a gene set: 
(i) tests of independence in a cross-classification table, which counts genes belonging both 
to the prespecified gene-set and to the differentially-expressed gene set, e.g. Fishers exact 
test (ii) tests which make no hard classification of genes into differentially expressed 
versus not differentially expressed, but rather use the p-value of every gene-phenotype 
correlation, e.g. gene set enrichment analysis (Subramanian et al. 2005) (iii) high-
dimensional regression models which regress phenotype directly on the raw gene 
expression levels of all genes in the gene-set, e.g. global score test. A serious case can be 
made for the latter (Jelle J Goeman and Bühlmann 2007). P-values derived from these 
models have a clear interpretation with respect to sampling variation over participants - 
not over genes. Unlike many popular alternatives, these p-values do not depend on the 
(obviously false) assumption that gene expression measurements are independent. This 
class of models bears a close relation to hierachical and empirical Bayesian models, 
penalized likelihood, whose behavior has been well studied. 

The 53-gene "CTRA" set - discussed in prior literature - is of primary interest to us here. It 
is listed below and includes (a) 19 proinflammatory genes which are upregulated in CTRA 
"on average" (b) 31 genes involved in type I IFN responses down-regulated in the CTRA (c) 
3 genes involved in antibody synthesis down-regulated in the CTRA. These molecules have 
been historically designated by their HGNC names (HUGO gene nomenclature committee). 
IL1A, IL1B, IL6, IL8, TNF, PTGS1, PTGS2, FOS, FOSB, FOSL1, FOSL2, JUN, JUNB, JUND, 
NFKB1, NFKB2, REL, RELA, RELB, GBP1, IFI16, IFI27, IFI27L1, IFI27L2, IFI30, IFI35, IFI44, 
IFI44L, IFI6, IFIH1, IFIT1, IFIT2, IFIT3, IFIT5, IFIT1L, IFITM1, IFITM2, IFITM3, IFITM4P, 
IFITM5, IFNB1, IRF2, IRF7, IRF8, MX1, MX2, OAS1, OAS2, OAS3, OASL, IGJ, IGLL1, IGLL3. 
Our chip covers a subset of these molecules (our chip is different from that used in the Cole 
lab historically, i.e. the Illumina Human HT-12 v4 BeadArray). In particular, 50 of the 53 
CTRA were on this chip. Inflamatory: IL1A, IL1B, IL6, CXCL8, TNF, PTGS1, PTGS2, FOS, 
FOSB, FOSL1, FOSL2, JUN, JUNB, JUND, NFKB1, NFKB2, REL, RELA, RELB; Interferon type-I: 
IFI16, IFI27, IFI27L1, IFI27L2, IFI30, IFI35, IFI44, IFI44L, IFI6, IFIH1, IFIT1, IFIT2, IFIT3, 
IFIT5, IFIT1B, IFITM1, IFITM2, IFITM3, IFITM4P, IFITM5, IFNB1, IRF2, IRF7, IRF8, MX1, 
OAS1, OAS2, OAS3, OASL. Antibody: JCHAIN, IGLL1. Note that 4 of the original 53 CTRA 
have been renamed: IL8, IFIT1L, IGJ, IGLL3 are now CXCL8, IFIT1B, JCHAIN, IGLL3P. 



Figures 

 

Figure 1: The observed marginal distribution of gene expression for each CTRA molecule. 



 



Figure 2: A decomposition of the CTRA interferon global score test. The global score test 
statistic can be interpreted as a weighted average (partial) correlation between each gene 
and the residuals of Chen (with respect to covariates). These contributions themselves 
constitute tests. In addition, we can test all nested subsets of the CTRA interferons, as 
induced by agglomerative hierarchical clustering (based on correlation distance). This 
analysis showed that there is little specificity to our results: some CTRA interferons were 
related to Chen, but we cannot confidently narrow this conclusion further to some smaller 
subset of CTRA interferons, or to any individual interferons. 

 

Figure 3: Possible causal interpretations of the fact that Chen and CTRA interferons are 
related, but only before accounting for bmi. 



 



Figure 4: Our observed association between CTRA and NP cannot be parsimoniously 
reduced to an association between any CTRA subset - defined by agglomerative clustering 
as in Figure 2 - and NP. 

Appendix 

Chen and NP 

 



NP and race 

 

NP and (log) income 

28 subjects had both income and NP scores. There was a significant negative relation 
between income and NP in our data (r(28) = -0.4632759, p = 0.0130358), see Figure 0b. 



 

Chen and CTRA 

 

Figure : Linear effect of Chen on CTRA. 

Table: Mass univariate regression of CTRA genes on chen (Limma in R). 

 logFC AveExpr t P.Value adj.P.Val B 

IFIH1 -0.325 6.625 -3.001 0.006 0.290 -2.245 

MX1 -0.389 6.870 -2.545 0.017 0.306 -3.037 

IFIT3 -0.447 5.539 -2.442 0.022 0.306 -3.207 



JUN 0.258 4.075 2.321 0.028 0.306 -3.402 

IFI35 -0.176 6.507 -2.095 0.046 0.306 -3.751 

IFI44 -0.420 5.437 -1.948 0.062 0.306 -3.963 

IFIT5 -0.244 5.977 -1.946 0.062 0.306 -3.966 

OAS1 -0.266 6.823 -1.909 0.067 0.306 -4.018 

OASL -0.251 6.025 -1.903 0.068 0.306 -4.027 

OAS2 -0.226 6.871 -1.851 0.075 0.306 -4.098 

IFI44L -0.481 4.473 -1.842 0.077 0.306 -4.111 

RELA -0.105 5.462 -1.831 0.078 0.306 -4.126 

OAS3 -0.346 5.605 -1.824 0.080 0.306 -4.135 

IFITM2 -0.178 5.238 -1.752 0.091 0.326 -4.231 

IFIT1 -0.408 4.687 -1.669 0.107 0.356 -4.337 

PTGS2 0.158 5.019 1.587 0.124 0.388 -4.439 

IRF7 -0.128 4.848 -1.388 0.177 0.520 -4.669 

IFI6 -0.244 6.482 -1.315 0.200 0.555 -4.746 

IFI30 -0.105 9.498 -1.210 0.237 0.585 -4.852 

IRF2 -0.084 7.956 -1.189 0.245 0.585 -4.872 

IFITM4P -0.134 5.522 -1.171 0.252 0.585 -4.889 

NFKB1 -0.086 6.222 -1.139 0.265 0.585 -4.918 

IFI16 -0.083 8.707 -1.129 0.269 0.585 -4.928 

IGLL1 -0.081 4.634 -0.965 0.343 0.716 -5.067 

NFKB2 -0.064 6.105 -0.932 0.360 0.718 -5.093 

IFIT2 -0.154 5.545 -0.906 0.373 0.718 -5.112 

TNF -0.057 4.802 -0.859 0.398 0.737 -5.146 

IFITM3 -0.156 5.268 -0.797 0.433 0.754 -5.189 

FOS 0.066 5.288 0.754 0.457 0.754 -5.216 

IRF8 -0.061 6.214 -0.699 0.490 0.754 -5.250 

RELB -0.045 5.734 -0.684 0.500 0.754 -5.259 

IL1B -0.069 4.053 -0.674 0.506 0.754 -5.264 

IFIT1B 0.081 4.825 0.671 0.508 0.754 -5.266 

IFITM5 0.043 3.585 0.643 0.526 0.754 -5.281 

JCHAIN 0.132 8.678 0.640 0.528 0.754 -5.283 

CXCL8 0.053 2.849 0.499 0.622 0.864 -5.350 

FOSL2 -0.042 7.254 -0.441 0.663 0.885 -5.373 

PTGS1 -0.045 6.436 -0.427 0.673 0.885 -5.378 

IFI27L2 0.028 4.709 0.380 0.707 0.906 -5.394 



REL -0.027 5.651 -0.354 0.726 0.908 -5.403 

JUND -0.014 6.079 -0.316 0.755 0.920 -5.413 

IFITM1 -0.020 7.778 -0.274 0.786 0.928 -5.424 

JUNB -0.017 7.777 -0.191 0.850 0.928 -5.440 

FOSL1 0.015 3.672 0.185 0.855 0.928 -5.441 

IFI27 0.017 3.547 0.183 0.856 0.928 -5.442 

IFI27L1 -0.010 4.061 -0.178 0.860 0.928 -5.442 

IFNB1 0.012 2.488 0.163 0.872 0.928 -5.445 

FOSB -0.006 4.980 -0.060 0.953 0.987 -5.454 

IL6 -0.002 3.105 -0.033 0.974 0.987 -5.455 

IL1A -0.001 2.542 -0.016 0.987 0.987 -5.456 

Table: Regression of CTRA genes on chen, adjusting for sex and race. 

 logFC AveExpr t P.Value adj.P.Val B 

JCHAIN 0.476 8.678 2.050 0.051 0.880 -4.009 

IFIH1 -0.243 6.625 -1.809 0.083 0.880 -4.189 

RELA -0.127 5.462 -1.761 0.091 0.880 -4.223 

IGLL1 -0.177 4.634 -1.740 0.094 0.880 -4.238 

FOS 0.163 5.288 1.548 0.134 0.880 -4.368 

IFITM2 -0.190 5.238 -1.482 0.151 0.880 -4.410 

NFKB1 -0.127 6.222 -1.332 0.195 0.880 -4.501 

IFI35 -0.138 6.507 -1.298 0.206 0.880 -4.521 

IFI27L1 -0.087 4.061 -1.256 0.221 0.880 -4.544 

IL1A -0.097 2.542 -1.236 0.228 0.880 -4.555 

IRF8 -0.118 6.214 -1.222 0.233 0.880 -4.562 

OASL -0.195 6.025 -1.175 0.251 0.880 -4.588 

OAS1 -0.206 6.823 -1.172 0.252 0.880 -4.589 

PTGS2 0.147 5.019 1.161 0.257 0.880 -4.595 

MX1 -0.211 6.870 -1.144 0.264 0.880 -4.604 

NFKB2 -0.087 6.105 -0.991 0.331 0.919 -4.677 

IFIT3 -0.202 5.539 -0.930 0.362 0.919 -4.704 

FOSB -0.106 4.980 -0.852 0.403 0.919 -4.736 

IFI44L -0.276 4.473 -0.852 0.403 0.919 -4.737 

OAS2 -0.122 6.871 -0.811 0.425 0.919 -4.752 

IFI44 -0.209 5.437 -0.802 0.430 0.919 -4.756 

JUN 0.099 4.075 0.764 0.452 0.919 -4.769 

CXCL8 0.102 2.849 0.760 0.454 0.919 -4.771 



IFITM5 0.059 3.585 0.750 0.460 0.919 -4.774 

OAS3 -0.165 5.605 -0.710 0.485 0.919 -4.788 

JUND -0.035 6.079 -0.683 0.501 0.919 -4.797 

IL1B -0.071 4.053 -0.582 0.566 0.919 -4.827 

IFI30 -0.061 9.498 -0.559 0.581 0.919 -4.833 

IFITM3 -0.135 5.268 -0.545 0.591 0.919 -4.837 

PTGS1 -0.070 6.436 -0.525 0.604 0.919 -4.842 

TNF -0.039 4.802 -0.474 0.640 0.919 -4.854 

IFIT2 0.089 5.545 0.469 0.643 0.919 -4.855 

IFIT5 -0.064 5.977 -0.444 0.661 0.919 -4.861 

IFI27 -0.044 3.547 -0.403 0.690 0.919 -4.869 

IFI6 -0.090 6.482 -0.397 0.694 0.919 -4.870 

IFITM4P -0.055 5.522 -0.394 0.697 0.919 -4.871 

IL6 0.031 3.105 0.374 0.711 0.919 -4.874 

IFI27L2 -0.029 4.709 -0.341 0.736 0.919 -4.880 

IFNB1 -0.029 2.488 -0.315 0.756 0.919 -4.884 

FOSL2 0.036 7.254 0.309 0.760 0.919 -4.885 

IFITM1 -0.025 7.778 -0.288 0.776 0.919 -4.888 

JUNB 0.031 7.777 0.269 0.790 0.919 -4.891 

IFIT1B 0.037 4.825 0.269 0.790 0.919 -4.891 

RELB -0.018 5.734 -0.223 0.826 0.938 -4.896 

IRF2 -0.016 7.956 -0.195 0.847 0.941 -4.899 

IFIT1 -0.045 4.687 -0.163 0.872 0.948 -4.902 

REL 0.013 5.651 0.134 0.894 0.951 -4.904 

IFI16 -0.008 8.707 -0.090 0.929 0.952 -4.906 

FOSL1 0.009 3.672 0.085 0.933 0.952 -4.907 

IRF7 0.000 4.848 -0.002 0.998 0.998 -4.908 

Table: Regression of CTRA genes on chen, adjusting for sex, race and BMI. 

 logFC AveExpr t P.Value adj.P.Val B 

JCHAIN 0.560 8.678 2.321 0.030 0.815 -3.825 

IFIH1 -0.273 6.625 -1.907 0.069 0.815 -4.134 

IGLL1 -0.190 4.634 -1.781 0.088 0.815 -4.222 

RELA -0.131 5.462 -1.708 0.102 0.815 -4.271 

IFITM2 -0.209 5.238 -1.655 0.112 0.815 -4.306 

IFI35 -0.161 6.507 -1.513 0.144 0.815 -4.395 

MX1 -0.268 6.870 -1.388 0.179 0.815 -4.469 



IFIT3 -0.282 5.539 -1.365 0.186 0.815 -4.483 

PTGS2 0.164 5.019 1.337 0.195 0.815 -4.498 

IFI27L1 -0.098 4.061 -1.334 0.196 0.815 -4.500 

NFKB1 -0.134 6.222 -1.325 0.199 0.815 -4.505 

OAS1 -0.235 6.823 -1.276 0.215 0.815 -4.532 

OASL -0.211 6.025 -1.180 0.251 0.815 -4.582 

FOS 0.119 5.288 1.169 0.255 0.815 -4.587 

IRF8 -0.120 6.214 -1.157 0.259 0.815 -4.593 

IL1A -0.095 2.542 -1.154 0.261 0.815 -4.595 

JUN 0.141 4.075 1.105 0.281 0.826 -4.619 

IL6 0.080 3.105 1.066 0.298 0.827 -4.637 

IFI44L -0.328 4.473 -0.943 0.356 0.863 -4.691 

IFI44 -0.251 5.437 -0.897 0.379 0.863 -4.710 

OAS2 -0.140 6.871 -0.870 0.394 0.863 -4.721 

IFITM5 0.071 3.585 0.848 0.405 0.863 -4.729 

NFKB2 -0.078 6.105 -0.842 0.409 0.863 -4.732 

IFI27 -0.088 3.547 -0.832 0.414 0.863 -4.736 

OAS3 -0.186 5.605 -0.744 0.465 0.866 -4.767 

FOSB -0.092 4.980 -0.729 0.473 0.866 -4.772 

CXCL8 0.092 2.849 0.715 0.482 0.866 -4.776 

IFIT5 -0.100 5.977 -0.677 0.505 0.866 -4.788 

IFITM1 -0.057 7.778 -0.641 0.528 0.866 -4.799 

IFITM3 -0.149 5.268 -0.591 0.561 0.866 -4.813 

IRF2 -0.046 7.956 -0.531 0.601 0.866 -4.829 

IFITM4P -0.076 5.522 -0.521 0.607 0.866 -4.831 

IL1B -0.065 4.053 -0.509 0.616 0.866 -4.834 

IFI30 -0.058 9.498 -0.507 0.617 0.866 -4.835 

REL 0.045 5.651 0.477 0.638 0.866 -4.842 

JUND -0.026 6.079 -0.472 0.642 0.866 -4.843 

IFI6 -0.112 6.482 -0.459 0.651 0.866 -4.845 

IFIT1 -0.130 4.687 -0.448 0.658 0.866 -4.848 

IFI16 -0.035 8.707 -0.390 0.700 0.881 -4.859 

TNF -0.033 4.802 -0.380 0.708 0.881 -4.861 

FOSL1 -0.038 3.672 -0.359 0.723 0.881 -4.864 

IFIT2 0.063 5.545 0.315 0.755 0.896 -4.871 

IFI27L2 -0.026 4.709 -0.286 0.777 0.896 -4.875 



PTGS1 -0.034 6.436 -0.244 0.810 0.896 -4.881 

RELB -0.020 5.734 -0.230 0.820 0.896 -4.882 

JUNB 0.025 7.777 0.224 0.825 0.896 -4.883 

IFNB1 -0.018 2.488 -0.184 0.856 0.911 -4.887 

FOSL2 0.014 7.254 0.130 0.898 0.935 -4.891 

IFIT1B 0.012 4.825 0.088 0.930 0.944 -4.893 

IRF7 -0.008 4.848 -0.071 0.944 0.944 -4.893 

Negative parenting and CTRA 

 

Figure : Linear effect of NP on CTRA. 

Table: Mass univariate regression of CTRA genes on NP. 

 logFC AveExpr t P.Value adj.P.Val B 

IFI30 -0.298 9.428 -3.374 0.002 0.099 -1.364 

IFI27L2 -0.188 4.666 -3.127 0.004 0.099 -1.923 

CXCL8 -0.215 2.744 -2.951 0.006 0.103 -2.308 

IFIT3 -0.348 5.548 -2.292 0.029 0.284 -3.639 

IFI35 -0.149 6.498 -2.232 0.033 0.284 -3.750 

IFIT5 -0.212 5.998 -2.202 0.036 0.284 -3.804 

IFIT1B 0.236 4.875 2.139 0.041 0.284 -3.917 

IFI44 -0.363 5.458 -2.040 0.050 0.284 -4.090 

IFITM1 -0.126 7.729 -2.034 0.051 0.284 -4.101 

JUNB -0.147 7.764 -1.960 0.060 0.298 -4.226 

IFI44L -0.380 4.507 -1.747 0.091 0.414 -4.565 

OASL -0.176 6.031 -1.667 0.106 0.420 -4.684 

IFI6 -0.245 6.512 -1.651 0.109 0.420 -4.706 

IL1B -0.131 3.992 -1.572 0.127 0.432 -4.819 

MX1 -0.200 6.925 -1.540 0.134 0.432 -4.863 



OAS3 -0.237 5.683 -1.523 0.139 0.432 -4.887 

FOSL2 -0.109 7.245 -1.456 0.156 0.432 -4.976 

IRF7 -0.105 4.864 -1.431 0.163 0.432 -5.008 

IL1A -0.067 2.498 -1.427 0.164 0.432 -5.013 

IFIT2 -0.184 5.551 -1.385 0.177 0.441 -5.067 

IFIT1 -0.271 4.681 -1.322 0.196 0.467 -5.144 

IRF8 -0.082 6.188 -1.156 0.257 0.553 -5.333 

IFIH1 -0.116 6.689 -1.141 0.263 0.553 -5.348 

IGLL1 -0.086 4.642 -1.135 0.266 0.553 -5.355 

IFITM2 -0.102 5.168 -1.009 0.321 0.622 -5.481 

FOSB 0.087 5.034 0.994 0.328 0.622 -5.494 

IFITM4P -0.095 5.520 -0.956 0.347 0.622 -5.528 

IL6 -0.050 3.078 -0.953 0.349 0.622 -5.532 

IFITM3 -0.147 5.322 -0.915 0.368 0.634 -5.565 

JUND 0.029 6.079 0.837 0.410 0.653 -5.630 

RELA -0.044 5.478 -0.830 0.413 0.653 -5.635 

OAS1 -0.098 6.824 -0.821 0.418 0.653 -5.642 

PTGS1 0.073 6.540 0.714 0.481 0.677 -5.719 

NFKB2 -0.040 6.107 -0.707 0.485 0.677 -5.724 

FOS -0.050 5.257 -0.686 0.498 0.677 -5.738 

NFKB1 0.043 6.217 0.671 0.507 0.677 -5.748 

REL -0.041 5.643 -0.655 0.518 0.677 -5.758 

PTGS2 -0.057 5.030 -0.651 0.520 0.677 -5.760 

OAS2 -0.065 6.868 -0.619 0.541 0.677 -5.780 

TNF -0.033 4.822 -0.618 0.541 0.677 -5.780 

IFITM5 0.020 3.563 0.371 0.713 0.851 -5.897 

JUN 0.033 4.069 0.339 0.737 0.851 -5.908 

IFI27L1 -0.014 4.055 -0.298 0.768 0.851 -5.921 

IFI16 -0.017 8.720 -0.282 0.780 0.851 -5.925 

RELB 0.017 5.773 0.279 0.782 0.851 -5.926 

JCHAIN -0.049 8.682 -0.278 0.783 0.851 -5.926 

IFI27 0.020 3.600 0.251 0.804 0.855 -5.933 

IRF2 -0.010 7.952 -0.178 0.860 0.882 -5.948 

FOSL1 0.013 3.696 0.169 0.867 0.882 -5.950 

IFNB1 0.009 2.461 0.149 0.882 0.882 -5.953 



Table: Regression of CTRA genes on NP, adjusting for sex and race. 

 logFC AveExpr t P.Value adj.P.Val B 

IFI27L2 -0.210 4.666 -3.413 0.002 0.054 -1.320 

IFI30 -0.315 9.428 -3.384 0.002 0.054 -1.387 

CXCL8 -0.236 2.744 -3.112 0.004 0.072 -1.992 

IFIT1B 0.283 4.875 2.655 0.013 0.163 -2.956 

IFIT3 -0.351 5.548 -2.428 0.022 0.220 -3.404 

IFI35 -0.155 6.498 -2.321 0.028 0.233 -3.607 

IFIT5 -0.186 5.998 -2.079 0.047 0.336 -4.042 

JUNB -0.152 7.764 -1.912 0.066 0.415 -4.323 

IFI44 -0.324 5.458 -1.844 0.076 0.416 -4.431 

IRF8 -0.122 6.188 -1.797 0.083 0.416 -4.504 

IFITM1 -0.103 7.729 -1.635 0.113 0.445 -4.748 

IFI44L -0.352 4.507 -1.626 0.115 0.445 -4.760 

MX1 -0.192 6.925 -1.625 0.116 0.445 -4.762 

OASL -0.168 6.031 -1.532 0.137 0.472 -4.892 

OAS3 -0.231 5.683 -1.492 0.147 0.472 -4.946 

FOSL2 -0.117 7.245 -1.478 0.151 0.472 -4.965 

IL1A -0.071 2.498 -1.432 0.163 0.480 -5.024 

IFI6 -0.200 6.512 -1.353 0.187 0.509 -5.124 

IRF7 -0.097 4.864 -1.333 0.194 0.509 -5.149 

IL1B -0.097 3.992 -1.154 0.258 0.616 -5.353 

IFITM2 -0.119 5.168 -1.117 0.274 0.616 -5.391 

IFIT1 -0.207 4.681 -1.113 0.275 0.616 -5.395 

IFIT2 -0.144 5.551 -1.094 0.283 0.616 -5.415 

IGLL1 -0.079 4.642 -0.989 0.331 0.672 -5.517 

IFIH1 -0.094 6.689 -0.980 0.336 0.672 -5.526 

FOSB 0.087 5.034 0.938 0.356 0.676 -5.563 

RELA -0.051 5.478 -0.908 0.372 0.676 -5.589 

IL6 -0.050 3.078 -0.895 0.378 0.676 -5.600 

TNF -0.047 4.822 -0.832 0.413 0.692 -5.652 

IFITM4P -0.083 5.520 -0.794 0.434 0.692 -5.681 

IFI27 0.058 3.600 0.762 0.452 0.692 -5.704 

PTGS1 0.079 6.540 0.750 0.459 0.692 -5.713 

PTGS2 -0.066 5.030 -0.718 0.479 0.692 -5.735 

NFKB1 0.048 6.217 0.710 0.484 0.692 -5.741 



OAS1 -0.088 6.824 -0.709 0.484 0.692 -5.742 

NFKB2 -0.040 6.107 -0.663 0.513 0.697 -5.772 

REL -0.043 5.643 -0.641 0.527 0.697 -5.785 

IFITM3 -0.107 5.322 -0.636 0.530 0.697 -5.788 

OAS2 -0.058 6.868 -0.574 0.571 0.717 -5.825 

FOS -0.043 5.257 -0.569 0.574 0.717 -5.827 

JUND 0.020 6.079 0.537 0.595 0.726 -5.844 

FOSL1 0.023 3.696 0.301 0.765 0.911 -5.939 

IFI16 0.013 8.720 0.231 0.819 0.930 -5.958 

IFI27L1 -0.009 4.055 -0.184 0.856 0.930 -5.967 

JUN 0.015 4.069 0.168 0.868 0.930 -5.970 

IRF2 0.009 7.952 0.161 0.873 0.930 -5.971 

JCHAIN -0.030 8.682 -0.160 0.874 0.930 -5.971 

IFITM5 -0.007 3.563 -0.120 0.906 0.943 -5.976 

RELB 0.003 5.773 0.042 0.967 0.986 -5.983 

IFNB1 0.001 2.461 0.014 0.989 0.989 -5.983 

Table: Regression of CTRA genes on NP, adjusting for sex, race and BMI. 

 logFC AveExpr t P.Value adj.P.Val B 

IFI27L2 -0.200 4.666 -2.310 0.029 0.487 -3.759 

IFI44 -0.521 5.458 -2.170 0.040 0.487 -3.880 

IFI30 -0.272 9.428 -2.087 0.047 0.487 -3.950 

MX1 -0.315 6.925 -1.970 0.060 0.487 -4.045 

IRF8 -0.183 6.188 -1.954 0.062 0.487 -4.059 

IFI44L -0.574 4.507 -1.936 0.064 0.487 -4.073 

CXCL8 -0.193 2.744 -1.894 0.070 0.487 -4.107 

IFIT3 -0.349 5.548 -1.834 0.078 0.487 -4.153 

OAS1 -0.291 6.824 -1.776 0.088 0.487 -4.197 

JUN 0.184 4.069 1.533 0.138 0.581 -4.373 

OAS3 -0.311 5.683 -1.436 0.163 0.581 -4.437 

IFIT5 -0.171 5.998 -1.412 0.170 0.581 -4.452 

REL -0.119 5.643 -1.406 0.172 0.581 -4.456 

IFI6 -0.287 6.512 -1.387 0.178 0.581 -4.469 

OASL -0.209 6.031 -1.353 0.188 0.581 -4.490 

IFITM1 -0.117 7.729 -1.337 0.193 0.581 -4.500 

IFIT1B 0.195 4.875 1.323 0.198 0.581 -4.508 

IFIT1 -0.316 4.681 -1.239 0.227 0.583 -4.558 



IFI35 -0.110 6.498 -1.213 0.236 0.583 -4.572 

IFIH1 -0.160 6.689 -1.200 0.241 0.583 -4.580 

IFITM3 -0.274 5.322 -1.191 0.245 0.583 -4.585 

IL6 -0.076 3.078 -1.130 0.269 0.612 -4.619 

RELA -0.067 5.478 -0.847 0.405 0.852 -4.753 

IFITM5 0.057 3.563 0.761 0.453 0.852 -4.786 

OAS2 -0.106 6.868 -0.749 0.461 0.852 -4.791 

IRF7 -0.074 4.864 -0.728 0.474 0.852 -4.799 

PTGS2 0.086 5.030 0.714 0.482 0.852 -4.804 

NFKB1 0.064 6.217 0.678 0.504 0.852 -4.816 

TNF -0.053 4.822 -0.676 0.505 0.852 -4.816 

PTGS1 0.097 6.540 0.655 0.519 0.852 -4.824 

IGLL1 -0.069 4.642 -0.618 0.542 0.852 -4.835 

IFI27 -0.062 3.600 -0.613 0.546 0.852 -4.837 

JUNB -0.059 7.764 -0.559 0.581 0.873 -4.853 

JUND 0.027 6.079 0.523 0.606 0.873 -4.862 

NFKB2 -0.043 6.107 -0.515 0.611 0.873 -4.864 

IL1B 0.053 3.992 0.480 0.635 0.882 -4.873 

IFITM2 0.059 5.168 0.417 0.680 0.915 -4.887 

IFI16 0.030 8.720 0.396 0.695 0.915 -4.892 

IFIT2 -0.058 5.551 -0.322 0.750 0.951 -4.905 

IL1A -0.021 2.498 -0.308 0.760 0.951 -4.907 

FOSL2 0.027 7.245 0.274 0.786 0.959 -4.912 

IRF2 0.017 7.952 0.225 0.824 0.961 -4.918 

IFITM4P 0.031 5.520 0.221 0.827 0.961 -4.919 

RELB 0.013 5.773 0.145 0.886 0.978 -4.926 

IFNB1 0.009 2.461 0.108 0.915 0.978 -4.928 

JCHAIN 0.027 8.682 0.102 0.919 0.978 -4.929 

FOSL1 -0.008 3.696 -0.078 0.938 0.978 -4.930 

FOSB 0.010 5.034 0.077 0.939 0.978 -4.930 

FOS -0.003 5.257 -0.035 0.972 0.992 -4.931 

IFI27L1 0.000 4.055 -0.005 0.996 0.996 -4.931 

ACME 
Table: ACME of NP on CTRA, via Chen. 

 2.5% 97.5% 



IL1A -0.0492691 0.1226263 

IL1B -0.2292277 0.0999527 

IL6 -0.1210280 0.1166459 

CXCL8 -0.0736483 0.2732447 

TNF -0.1445491 0.0562754 

PTGS1 -0.1932632 0.1559906 

PTGS2 -0.0350711 0.3398224 

FOS -0.0639153 0.1694459 

FOSB -0.2043235 0.1479612 

FOSL1 -0.1652599 0.1806089 

FOSL2 -0.1481825 0.1198619 

JUN -0.0164303 0.4133509 

JUNB -0.0862870 0.1294175 

JUND -0.0622679 0.0180468 

NFKB1 -0.2157946 0.0147637 

NFKB2 -0.1948588 0.0563514 

REL -0.1191951 0.1028080 

RELA -0.1949663 0.0330904 

RELB -0.1669905 0.0575605 

IFI16 -0.1682092 0.0188644 

IFI27 -0.1854050 0.1873231 

IFI27L1 -0.0929109 0.0981262 

IFI27L2 -0.0371968 0.1049537 

IFI30 -0.1594560 0.0765764 

IFI35 -0.2018739 0.0202945 

IFI44 -0.5666978 0.1349518 

IFI44L -0.6984903 0.1324819 

IFI6 -0.3766706 0.1287165 

IFIH1 -0.4163483 0.0245304 

IFIT1 -0.6507310 0.1106404 

IFIT2 -0.3665873 0.1825211 

IFIT3 -0.6060644 0.0681605 

IFIT5 -0.2659560 0.0300885 

IFIT1B -0.1897296 0.1455182 

IFITM1 -0.1056862 0.0778914 

IFITM2 -0.2654835 0.0253557 



IFITM3 -0.4447370 0.1407896 

IFITM4P -0.3049322 0.0727289 

IFITM5 -0.0608937 0.0968012 

IFNB1 -0.1230881 0.1269578 

IRF2 -0.1768799 0.0097599 

IRF7 -0.2096993 0.0484995 

IRF8 -0.1525945 0.0351236 

MX1 -0.5053552 0.0275972 

OAS1 -0.4666046 0.0599672 

OAS2 -0.3319225 0.0193999 

OAS3 -0.5234441 0.0546053 

OASL -0.3529898 0.0445261 

JCHAIN -0.2314463 0.5212531 

IGLL1 -0.1449014 0.0793230 
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